Skip to main content
Log in

Features of the decomposition of the nitrosyl iron complex with thiourea ligands under aerobic conditions: experiment and kinetic and quantum chemical modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of oxygen with the nitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]+ (complex 1) was studied. According to the results obtained, three main directions of transformation of complex 1 under aerobic conditions can be distinguished: (i) reversible binding of complex 1 with oxygen leading to a sharp decrease in the oxygen concentration at the initial moment, (ii) irreversible spontaneous transformation of complex 1 without participation of oxygen accompanied by the elimination of thio ligands and NO groups, and (iii) irreversible reaction of complex 1 with oxygen to form oxygen coordination products (at the iron atom, Fe-N bond, and two N atoms of nitrosyl ligands), which then reversibly transform into oxidation products. The latter process is accompanied by an increase in the absorbance in the experimental UV spectra and the formation of nitrates and nitrites in the reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bryan, D. J. Lefer, Mol. Pharmacol., 2019, 96, 109; DOI: https://doi.org/10.1124/mol.118.113910.

    Article  CAS  Google Scholar 

  2. L. J. Ignarro, J. Physiol. Pharmacol., 2002, 53, 503.

    CAS  PubMed  Google Scholar 

  3. S. Korde Choudhari, M. Chaudhary, S. Bagde, A. R. Gadbail, V. Joshi, World J. Surg. Oncol., 2013, 11, 118; DOI: https://doi.org/10.1186/1477-7819-11-118.

    Article  Google Scholar 

  4. N. Lehnert, E. Kim, H. T. Dong, J. B. Harland, A. P. Hunt, E. C. Manickas, K. M. Oakley, J. Pham, G. C. Reed, V. S. Alfaro, Chem. Rev., 2021, 121, 14682; DOI: https://doi.org/10.1021/acs.chemrev.1c00253.

    Article  CAS  Google Scholar 

  5. C.-Y. Chiang, M. Y. Darensbourg, J. Biol. Inorg. Chem., 2006, 11, 359; DOI: https://doi.org/10.1007/s00775-006-0084-y.

    Article  CAS  Google Scholar 

  6. A. F. Vanin, S. V. Kiladze, L. N. Kubrina, Biofizika [Biophysics], 1975, 20, 1068–1072 (in Russian).

    CAS  PubMed  Google Scholar 

  7. T. Ueno, T. Yoshimura, Jpn J. Pharmacol., 2000, 82, 95; DOI: https://doi.org/10.1254/jjp.82.95.

    Article  CAS  Google Scholar 

  8. H. Lewandowska, M. Kalinowska, K. Brzóska, K. Wójciuk, G. Wójciuk, M. Kruszewski, Dalton Trans., 2011, 40, 8273; DOI: https://doi.org/10.1039/C0DT01244K.

    Article  CAS  Google Scholar 

  9. N. I. Neshev, E. M. Sokolova, G. I. Kozub, T. A. Kondrat’eva, N. A. Sanina, Russ. Chem. Bull., 2020, 69, 1987; DOI: https://doi.org/10.1007/s11172-020-2989-y.

    Article  CAS  Google Scholar 

  10. N. S. Emel’yanova, L. G. Gutsev, O. V. Pokidova, A. F. Shestakov, N. A. Sanina, S. M. Aldoshin, Inorg. Chim. Acta, 2021, 522, 120361; DOI: https://doi.org/10.1016/j.ica.2021.120361.

    Article  Google Scholar 

  11. A. Banerjee, S. Sen, A. Paul, Chem. — A Eur. J., 2018, 24, 3330; DOI: https://doi.org/10.1002/chem.201705726.

    Article  CAS  Google Scholar 

  12. O. V. Pokidova, N. S. Emel’yanova, B. L. Psikha, A. V. Kulikov, B. A. Tretyakov, A. I. Kotel’nikov, N. A. Sanina, S. M. Aldoshin, Inorg. Chim. Acta, 2020, 502, 119369; DOI: https://doi.org/10.1016/j.ica.2019.119369.

    Article  CAS  Google Scholar 

  13. H. L. K. Wah, M. Postel, F. Tomi, Inorg. Chem., 1989, 28, 233; DOI: https://doi.org/10.1021/ic00301a015.

    Article  CAS  Google Scholar 

  14. N. A. Sanina, N. S. Emel’yanova, A. N. Chekhlov, A. F. Shestakov, I. V. Sulimenkov, S. M. Aldoshin, Russ. Chem. Bull., 2010, 59, 1126; DOI: https://doi.org/10.1007/s11172-010-0215-z.

    Article  CAS  Google Scholar 

  15. N. A. Sanina, S. M. Aldoshin, N. Y. Shmatko, D. V. Korchagin, G. V. Shilov, N. S. Ovanesyan, A. V. Kulikov, Inorg. Chem. Commun., 2014, 49, 44; DOI: https://doi.org/10.1016/j.inoche.2014.09.016.

    Article  CAS  Google Scholar 

  16. N. A. Sanina, N. Y. Shmatko, D. V. Korchagin, G. V. Shilov, A. A. Terent’ev, T. S. Stupina, A. A. Balakina, N. V. Komleva, N. S. Ovanesyan, A. V. Kulikov, S. M. Aldoshin, J. Coord. Chem., 2016, 69, 812; DOI: https://doi.org/10.1080/00958972.2016.1142536.

    Article  CAS  Google Scholar 

  17. N. Sanina, N. Shmatko, T. Stupina, A. Balakina, A. Terent’ev, Molecules, 2017, 22, 1426; DOI: https://doi.org/10.3390/molecules22091426.

    Article  Google Scholar 

  18. V. M. Ignat’ev, N. S. Emel’yanova, N. A. Sanina, Russ. Chem. Bull., 2020, 69, 2265; DOI: https://doi.org/10.1007/s11172-020-3045-7.

    Article  Google Scholar 

  19. N. A. Sanina, L. A. Syrtsova, N. I. Shkondina, T. N. Rudneva, E. S. Malkova, T. A. Bazanov, A. I. Kotel’nikov, S. M. Aldoshin, Nitric Oxide, 2007, 16, 181; DOI: https://doi.org/10.1016/j.niox.2006.10.005.

    Article  CAS  Google Scholar 

  20. G. Geraci, L. J. Parkhurst, Q. H. Gibson, J. Biol. Chem., 1969, 244, 4664; DOI: https://doi.org/10.1016/S0021-9258(18)93675-6.

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  22. O. V. Pokidova, N. S. Emel’yanova, A. Y. Kormukhina, V. O. Novikova, A. V. Kulikov, A. I. Kotelnikov, N. A. Sanina, Dalton Trans., 2022, 51, 6473; DOI: https://doi.org/10.1039/d2dt00291d.

    Article  CAS  Google Scholar 

  23. O. V. Pokidova, A. Y. Kormukhina, A. I. Kotelnikov, T. N. Rudneva, K. A. Lyssenko, N. A. Sanina, Inorg. Chim. Acta, 2021, 524, 120453; DOI: https://doi.org/10.1016/j.ica.2021.120453.

    Article  CAS  Google Scholar 

  24. A. F. Vanin, A. P. Poltorakov, V. D. Mikoyan, L. N. Kubrina, D. S. Burbaev, Nitric Oxide, 2010, 23, 136; DOI: https://doi.org/10.1016/j.niox.2010.05.285.

    Article  CAS  Google Scholar 

  25. O. V. Pokidova, N. S. Emel’yanova, B. L. Psikha, N. A. Sanina, A. V. Kulikov, A. I. Kotel’nikov, S. M. Aldoshin, J. Mol. Struct., 2019, 1192, 264; DOI: https://doi.org/10.1016/j.molstruc.2019.05.005.

    Article  CAS  Google Scholar 

  26. L. J. Ignarro, J. M. Fukuto, J. M. Griscavage, N. E. Rogers, R. E. Byrns, Proc. Natl. Acad. Sci., 1993, 90, 8103; DOI: https://doi.org/10.1073/pnas.90.17.8103.

    Article  CAS  Google Scholar 

  27. M. N. Möller, N. Rios, M. Trujillo, R. Radi, A. Denicola, B. Alvarez, J. Biol. Chem., 2019, 294, 14776; DOI: https://doi.org/10.1074/jbc.REV119.006136.

    Article  Google Scholar 

  28. C. Helms, D. B. Kim-Shapiro, Free Radic. Biol. Med., 2013, 61, 464; DOI: https://doi.org/10.1016/j.freeradbiomed.2013.04.028.

    Article  CAS  Google Scholar 

  29. E. Antonini, M. Brunori, in North-Holland Research Monographs. Frontiers of Biology, Eds E. L. Tatum, A. Neuberger, North-Holland Publishing Company, Amsterdam-London, 1971, Vol. 21, p. 276.

  30. N. S. Emel’yanova, N. Yu. Shmatko, N. A. Sanina, S. M. Aldoshin, Russ. Chem. Bull., 2017, 66, 1842; DOI: https://doi.org/10.1007/s11172-017-1955-9.

    Article  Google Scholar 

  31. D. Ampadu Boateng, M. D. Word, L. G. Gutsev, P. Jena, K. M. Tibbetts, J. Phys. Chem. A, 2019, 123, 1140; DOI: https://doi.org/10.1021/acs.jpca.8b11723.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Pokidova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

This work was carried out in terms of state assignment (state registration Nos AAAA-A19-119071890015-6 and AAAA-A19-119111390022-2).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1604–1613, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokidova, O.V., Psikha, B.L., Emel’yanova, N.S. et al. Features of the decomposition of the nitrosyl iron complex with thiourea ligands under aerobic conditions: experiment and kinetic and quantum chemical modeling. Russ Chem Bull 71, 1604–1613 (2022). https://doi.org/10.1007/s11172-022-3569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3569-0

Key words

Navigation