Skip to main content
Log in

Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The chemical reactions between iron(III) and indole-3-acetic (IAA), -propionic (IPA), and -butyric (IBA) acids were studied in acidic aqueous solutions. The motivation of this work was that IAA is one of the most powerful natural plant-growth-regulating substances (phytohormones of the auxin series). Mössbauer spectra of the frozen aqueous solutions of iron(III) with indole-3-alkanoic acids as ligands (L), showed parallel reactions between Fe3+ and the ligands. Partly, it resulted in a complex formation which precipitated in aqueous solution and partly, in a redox process with iron(II) and the oxidised indole-3-alkanoic acids as products. The Mössbauer parameters of the Fe2+ species suggested a hexaaquo coordination environment. The chemical composition and coordination structure of the precipitated complexes were investigated using elemental analysis, Mössbauer spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopic techniques. The complexes were soluble in some organic solvents. So, Mössbauer, FTIR and solution X-ray diffraction measurements were carried out on the solution of complexes in acetone, hexadeutero acetone and methanol, respectively. The data obtained supported the existence of the μ-dihydroxo-bridging structure of the dimer: [L2Fe<(OH)2>FeL2] (where L is indole-3-propionate, -acetate or -butyrate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marumo S (1986) In: Takahashi N (ed) Chemistry of plant hormones. CRC Press, Inc., Boca Raton, Florida (USA), Chapter 2, pp 9–56

  2. Weyers JDB, Paterson NW (2001) New Phytologist 152:375–407

    Article  CAS  Google Scholar 

  3. Woodward AW, Bartel B (2005) Ann Bot (London) 95:707–735

    Article  CAS  Google Scholar 

  4. Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Trends Microbiol 8:298–300

    Article  CAS  Google Scholar 

  5. Costacurta A, Vanderleyden J (1995) Crit Rev Microbiol 21:1–18

    Article  Google Scholar 

  6. Kamnev AA, Kuzmann E (1997) Biochem Mol Biol Int 41:575–581

    CAS  Google Scholar 

  7. Kamnev AA, Kuzmann E (1997) In: Carmona P, Navarro R, Hernanz A, (eds) Spectroscopy of biological molecules: Modern trends. Annex. UNED Press, Madrid, pp 85–86

  8. Kamnev AA, Shchelochkov AG, Perfiliev YuD, Tarantilis PA, Polissiou MG (2001) J Mol Struct 563–564, 565–572

  9. Kamnev AA, Kuzmann E, Perfiliev YuD, Vankó Gy, Vértes A (1999) J Mol Struct 482–483, 703–711

  10. Kovács K, Kamnev AA, Shchelochkov AG, Kuzmann E, Medzihradszky-Schweiger H, Mink J, Vértes A (2004) J Radioanal Nucl Chem 262:151–156

    Article  Google Scholar 

  11. Kamnev AA, Kuzmann E, Perfiliev YuD, Vértes A, Ristić M, Popović S, Musić S (2000) J Radioanal Nucl Chem 246:123–129

    Article  CAS  Google Scholar 

  12. Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RNF (1996) Biochem J 313:841–847

    CAS  Google Scholar 

  13. Hinman RL, Lang J (1965) Biochemistry (USA) 4:144–158

    Article  CAS  Google Scholar 

  14. Harrod JF, Guerin C (1979) Inorg Chim Acta 37:141–144

    Article  CAS  Google Scholar 

  15. Vértes A, Parak F (1971) J Chem Soc Dalton Trans 2062–2068

  16. Klencsár Z, Kuzmann E, Vértes A (1996) J Radioanal Nucl Chem 210:105–114

    Article  Google Scholar 

  17. Radnai T, Ohtaki H (1996) Mol Phys 87:103–121

    Article  CAS  Google Scholar 

  18. Hajdu F, Pálinkás G (1972) J Appl Cryst 5:395–401

    Article  Google Scholar 

  19. Levy HA, Danford MD, Narten AH (1966) Oak Ridge National Laboratory Rep., Nr. 3960, 54 pp

  20. Hajdu F (1972) Acta Cryst A28:250–252

    Google Scholar 

  21. Pálinkás G, Radnai T (1976) Acta Cryst A32:666–668

    Google Scholar 

  22. Krogh-Moe K (1956) Acta Cryst 2:951–953

    Article  Google Scholar 

  23. Cromer DT, Waber JT (1965) Acta Cryst 18:104–109

    Article  CAS  Google Scholar 

  24. International Tables for X-ray Crystallography (1974) vol 4, The Kynoch Press, Birmingham (UK), pp 366

  25. Vértes A, Nagy DL (eds) (1990) Mössbauer spectroscopy of frozen solutions, Akad Kiadó, Budapest

  26. Ferraro JR, Walker WR (1965) Inorg. Chem, 4:1382–1386

    Google Scholar 

  27. Degen A, Bolte M (2001) Acta Cryst. E – Structure Reports Online, 57, Part 11, O999-O1000

  28. Narten AH, Habenschuss A (1984) J Chem Phys 80:3387–3391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor G. Pálinkás (Budapest, Hungary), Dr. P. A. Tarantilis (Athens, Greece) and Dr. A. G. Shchelochkov (Saratov, Russia) for many stimulating discussions and to L. Hajba for recording the far-infrared spectra.

This work was supported in parts by The Hungarian Science Foundation (OTKA Grant T43687), NATO (Expert Visit Grants LST.EV.980141 and CBP.NR.NREV.981748; Collaborative Linkage Grants LST.CLG.977664 and LST.NR.CLG.981092), Russian Academy of Sciences’ Commission (Grant No. 205 under the 6th Competition-Expertise of research projects), as well as under the Agreements on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2002–2004 and 2005–2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kamnev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, K., Kamnev, A.A., Mink, J. et al. Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17, 105–120 (2006). https://doi.org/10.1007/s11224-006-9005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-006-9005-5

Keywords

Navigation