Skip to main content
Log in

Evaluation of on-cage phosphorus doping of hydrogenated silicon fullerenes: a computational study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT calculations are applied to devise some stable atomic arrangements of (SiH)60−n P n heterofullerenes with replacing of 1, 2, 5, 6, 10, and 12 Si–H units with P atoms. Our results indicate that alternative P substitution on Si60H60 creates heterofullerenes with rather higher binding energies compared to those with segregated P and Si–H units. The pairing of two P atoms in the Si60H60 cage is not energetically favored and P atoms prefer to maximize the number of heteronuclear Si–P bonds. Generally, heterofullerenes with the configuration of one phosphorus atom per pentagon ring are found to be the most stable ones.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang D, Ma C, Liu C (2007) J Phys Chem C 111:17099–17103

    Article  CAS  Google Scholar 

  2. Zhang DJ, Guo GL, Liu CB (2006) J Phys Chem B 110:14619–14622

    Article  CAS  Google Scholar 

  3. Ponomarenko O, Radny MW, Smith PV (2004) Surf Sci 562:257–268

    Article  CAS  Google Scholar 

  4. Chen YW, Tang YH, Pei LZ, Guo C (2005) Adv Mater 17:564–567

    Article  Google Scholar 

  5. Tang YH, Pei LZ, Chen YW, Guo C (2005) Phys Rev Lett 95:116102

    Article  CAS  Google Scholar 

  6. Nešpůrek S, Wang G, Yoshino K (2005) J Optoelectron Adv Mater 7:223–230

    Google Scholar 

  7. Canham LT (1990) Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  8. Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545–2547

    Article  CAS  Google Scholar 

  9. Kroto HW, Heath JR, O’ Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  10. Nagase S, Kobayashi K (1991) Chem Phys Lett 187:291–294

    Article  Google Scholar 

  11. Piqueras MC, Crespo R, Orti E, Tomas F (1993) Chem Phys Lett 213:509–513

    Article  CAS  Google Scholar 

  12. Gong XG, Zheng QQ (1995) Phys Rev B 52:4756–4759

    Article  CAS  Google Scholar 

  13. Leszczynski J, Yanov I (1999) J Phys Chem A 103:396–401

    Article  CAS  Google Scholar 

  14. Zhao J, Ma L, Wen B (2007) J Phys: Condens Matter 19:226208

    Google Scholar 

  15. Chen ZF, Jiao HJ, Seifert G, Horn AHC, Yu DK, Clark T, Thiel W, Schleyer PVR (2003) J Comput Chem 24:948–953

    Article  CAS  Google Scholar 

  16. Sun Q, Wang Q, Jena P, Rao BK, Kawazoe Y (2003) Phys Rev Lett 90:135503

    Article  CAS  Google Scholar 

  17. Zdetsis AD (2007) Phys Rev B 76:075402

    Article  Google Scholar 

  18. Kumar V, Kawazoe Y (2003) Phys Rev Lett 90:055502

    Article  Google Scholar 

  19. Earley CW (2000) J Phys Chem A 104:6622–6627

    Article  CAS  Google Scholar 

  20. Wang L, Li D, Yang D (2006) Mol Simulat 32:663–666

    Article  CAS  Google Scholar 

  21. Barman S, Sen P, Das GP (2008) J Phys Chem C 112:19963–19968

    Article  CAS  Google Scholar 

  22. Pichierri F, Kumar V (2009) J Mol Struct (Theochem) 900:71–76

    Article  CAS  Google Scholar 

  23. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  24. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  25. Lee JG, Jeong HY, Lee H (2003) Bull Korean Chem Soc 24:369–376

    Article  CAS  Google Scholar 

  26. McPherson LD, Drees M, Khan SI, Strassner T, Abu-Omar MM (2004) Inorg Chem 43:4036–4050

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Zakrzewski VG, Cheeseman JR, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7. Gaussian Inc, Pittsburgh

    Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  30. Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431–9437

    Article  CAS  Google Scholar 

  31. Baboul AG, Schlegel HB (1996) J Am Chem Soc 118:8444–8451

    Article  CAS  Google Scholar 

  32. Singh UC, Basu PK, Rao CNR (1982) J Mol Struct (Theochem) 87:125–132

    Article  Google Scholar 

  33. Hudson RF, Wallis JD (1993) J Mol Struct 300:363–372

    Article  CAS  Google Scholar 

  34. Froudakis GE (2001) Nano Lett 1:531–533

    Article  CAS  Google Scholar 

  35. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581–1583

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghafouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anafcheh, M., Ghafouri, R. Evaluation of on-cage phosphorus doping of hydrogenated silicon fullerenes: a computational study. Struct Chem 25, 37–42 (2014). https://doi.org/10.1007/s11224-013-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0243-z

Keywords

Navigation