Skip to main content
Log in

Stability and electronic properties of praseodymium-doped silicon clusters PrSin (n = 12–21)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The neutral PrSi n (n = 12–21) species considering various spin configurations were systematically studied using PBE0 and B3LYP schemes in combination with relativistic small-core potentials (ECP28MWB) for Pr atoms and cc-pVTZ basis set for Si atoms. The total energy, growth-pattern, equilibrium geometry, relative stability, hardness, charge transfer, and magnetic moments are calculated and discussed. The results reveal that when n < 20, the ground-state structure of PrSi n evaluated to be prolate clusters. Starting from n = 20, the ground-state structures of PrSi n are evaluated to be endohedral cagelike clusters. Although the relative stabilities based on various binding energies and different functional is different from each other, the consensus is that the PrSi13, PrSi16, PrSi18, and PrSi20 are more stable than the others, especially the PrSi20. Analyses of hardness show that introducing Pr into Si n (n = 12–21) elevates the photochemical sensitivity, especially for PrSi20. Calculated result of magnetic moment and charge transfer shows that the 4f electrons of Pr in the clusters are changed, especially in endohedral structures such as PrSi20, in which one electron transfers from 4f to 5d orbital. That is, the 4f electron of Pr in the clusters participates in bonding. The way to participate in bonding is that a 4f electron transfers to 5d orbital. Although the 4f electron of Pr atom participates in bonding, the total magnetic moment of PrSi n is equal to that of isolated Pr atom. The charge always transfers from Pr atom to Si n cluster for the ground state structures of PrSin (n = 12–19), but charge transfer is reverse for n ≥ 20. The largest charge transfer for endohedral structure reveals that the bonding between Pr and Si n is ionic in nature and very strong. The fullerenelike structure of PrSi20 is the most stable among all of these clusters and can act as the building blocks for novel functional nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avaltroni F, Steinmann SN, Corminboeuf C (2012) Phys Chem Chem Phys 14:14842–14849

    Article  CAS  Google Scholar 

  2. Tam NM, Tai TB, Ngan VT, Nguyen MT (2013) J Phys Chem A 117:6867–6882

    Article  Google Scholar 

  3. Lin L, Yang JC (2015) J Mol Model 21(155):1–13

    Article  Google Scholar 

  4. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Chem Phys A 106:3702–3705

    Article  CAS  Google Scholar 

  5. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) J Chem Phys 129(214301):1–7

    Google Scholar 

  6. Grubisic A, Ko YJ, Wang H, Bowen KH (2009) J Am Chem Soc 131:10783–10790

    Article  CAS  Google Scholar 

  7. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130(164514):1–9

    Google Scholar 

  8. Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Phys Rev B 77(195417):1–8

    Google Scholar 

  9. Wang JG, Zhao JJ, Ma L, Wang BL, Wang GH (2007) Phys Lett A 367:335–344

    Article  CAS  Google Scholar 

  10. Kenyon AJ (2005) Semicond Sci Technol 20:R65–R84

    Article  CAS  Google Scholar 

  11. Hou LY, Yang JC, Liu YM (2016) J Mol Model 22(193):1–10

    CAS  Google Scholar 

  12. Peng Q, Shen J (2008) J. Chem. Phys. 128(084711):1–11

    Google Scholar 

  13. Zhao GF, Sun JM, Gu YZ, Wang YX (2009) J Chem Phys 131:114312-1–114312-7

  14. Li CG, Pan LJ, Shao P, Ding LP, Feng HT, Luo DB, Liu B (2015) Theor Chem Accounts 134(34):1–11

    Google Scholar 

  15. Liu TG, Zhao GF, Wang YX (2011) Phys Lett A 375:1120–1127

    Article  CAS  Google Scholar 

  16. Liu TG, Zhang WQ, Li YL (2014) Front Phys 9:210–218

    Article  CAS  Google Scholar 

  17. Zhao RN, Ren ZY, Guo P, Bai JT, Zhang CH, Han JG (2006) J Phys Chem A 110:4071–4079

    Article  CAS  Google Scholar 

  18. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) Chem Phys 372:89–95

    Article  CAS  Google Scholar 

  19. Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  20. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) J Mol Struct 895:148–155

    Article  CAS  Google Scholar 

  21. Wang HQ, Li HF (2014) RSC Adv 4:29782–29793

    Article  CAS  Google Scholar 

  22. Zhao RN, Han JG (2014) RSC Adv 4:64410–64418

    Article  CAS  Google Scholar 

  23. Kumar V, Singh AK, Kawazoe Y (2006) Phys Rev B 74(125411):1–5

    Google Scholar 

  24. Yang JC, Wang J, Hao YR (2015) Theor Chem Accounts 134(81):1–11

    Google Scholar 

  25. Xie XH, Hao DS, Liu YM, Yang JC (2015) Comput Theor Chem 1074:1–8

    Article  CAS  Google Scholar 

  26. Xie XH, Hao DS, Yang JC (2015) Chem Phys 461:11–19

    Article  CAS  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  30. Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  31. Cao X, Dolg M (2002) J Mol Struct THEOCHEM 581:139–147

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, et al. (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  33. Yang JC, Feng YT, Xie XH, Wu HW (2016) Theor Chem Accounts 135(204):1–12

    Article  Google Scholar 

  34. Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985–8995

    Article  CAS  Google Scholar 

  35. Grossman JC, Mitáš L (1995) Phys Rev Lett 74:1323–1326

    Article  CAS  Google Scholar 

  36. Nigam S, Majumder C, Kulshreshtha SK (2006) J Chem Phys 125(074303):1–11

    Google Scholar 

  37. Yoo S, Zeng XC (2005) J Chem Phys 123(164303):1–6

    Google Scholar 

  38. Yoo S, Zeng XC (2006) J. Chem. Phys. 124(054304):1–6

    Google Scholar 

  39. Baerends EJ, Gritsenko OV, van Meer R (2013) 15:(39)16408-16425

Download references

Acknowledgments

This study was economically supported by the National Natural Science Foundation of China (Grant No. 21263010), by the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0216), and by the Program for Innovative Research Team in University of the Inner Mongolia Autonomous Region (Grant no. NMGIRT-A-1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yang, J. Stability and electronic properties of praseodymium-doped silicon clusters PrSin (n = 12–21). J Mol Model 23, 180 (2017). https://doi.org/10.1007/s00894-017-3352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3352-6

Keywords

Navigation