Skip to main content
Log in

Enthalpy of solvation correlations for organic solutes and gases dissolved in dichloromethane and 1,4-dioxane

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Enthalpies of solution at infinite dilution of 53 organic solutes in dichloromethane and 10 organic solutes in 1,4-dioxane were measured using semi-adiabatic solution calorimeter. Enthalpies of solvation for 103 organic vapors and gaseous solutes in dichloromethane and for 116 gaseous compounds in 1,4-dioxane were determined from the experimental and literature data. It is shown that an Abraham solvation equation with five descriptors can be used to correlate the experimental solvation enthalpies within standard deviations of 2.07 and 2.29 kJ mol−1 for dichloromethane and 1,4-dioxane, respectively. The derived correlations provide very accurate mathematical descriptions of the measured enthalpy of solvation data at 298 K, which in the case of 1,4-dioxane span a range of 121 kJ mol−1. Division of the experimental values into a training set and a test set shows that there is no bias in predictions, and that the predictive capability of the correlations is better than 3.5 kJ mol−1. Enthalpies of hydrogen bond formation of proton donor solutes (alcohols, amines, chlorinated hydrocarbons, etc.) with 1,4-dioxane were calculated based on the Abraham solvation equation. Obtained values are in good agreement with the available literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mintz C, Clark M, Acree WE Jr, Abraham MH (2007) J Chem Inf Model 47:115–121

    Article  CAS  Google Scholar 

  2. Mintz C, Burton K, Acree WE Jr, Abraham MH (2008) QSAR Comb Sci 27:179–186

    Article  CAS  Google Scholar 

  3. Mintz C, Clark M, Burton K, Acree WE Jr, Abraham MH (2007) QSAR Comb Sci 26:881–888

    Article  CAS  Google Scholar 

  4. Mintz C, Clark M, Burton K, Acree WE Jr, Abraham MH (2007) J Solut Chem 36:947–966

    Article  CAS  Google Scholar 

  5. Mintz C, Burton K, Acree WE Jr, Abraham MH (2007) Fluid Phase Equilib 258:191–198

    Article  CAS  Google Scholar 

  6. Mintz C, Burton K, Ladlie T, Clark M, Acree WE Jr, Abraham MH (2008) Thermochim Acta 470:67–76

    Article  CAS  Google Scholar 

  7. Stephens TW, Chou V, Quay AN, Acree WE Jr, Abraham MH (2011) Thermochim Acta 517:103–113

    Article  Google Scholar 

  8. Mintz C, Ladlie T, Burton K, Clark M, Acree WE Jr, Abraham MH (2008) QSAR Comb Sci 27:627–635

    Article  CAS  Google Scholar 

  9. Stephens TW, De La Rosa NE, Saifullah M, Ye S, Chou V, Quay AN, Acree WE Jr, Abraham MH (2011) Thermochim Acta 523:214–220

    Article  CAS  Google Scholar 

  10. Mintz C, Burton K, Ladlie T, Clark M, Acree WE Jr, Abraham MH (2009) J Mol Liq 144:23–31

    Article  CAS  Google Scholar 

  11. Mintz C, Gibbs J, Acree WE Jr, Abraham MH (2009) Thermochim Acta 484:65–69

    Article  CAS  Google Scholar 

  12. Mintz C, Burton K, Acree WE Jr, Abraham MH (2007) Thermochim Acta 459:17–25

    Article  CAS  Google Scholar 

  13. Sprunger LM, Achi SS, Acree WE Jr, Abraham MH (2009) Ind Eng Chem Res 48:8704–8709

    Article  CAS  Google Scholar 

  14. Grubbs LM, Acree WE Jr, Abraham MH (2010) Thermochim Acta 511:96–101

    Article  CAS  Google Scholar 

  15. Karunasekara T, Poole CF (2011) Talanta 83:1118–1125

    Article  CAS  Google Scholar 

  16. Karunasekara T, Poole CF (2011) Chromatographia 73:941–951

    Article  CAS  Google Scholar 

  17. Karunasekara T, Poole CF (2011) J Chromatogr A 1218:809–816

    Article  CAS  Google Scholar 

  18. Karunasekara T, Poole CF (2010) J Sep Sci 33:1167–1173

    CAS  Google Scholar 

  19. Poole CF, Karunasekara T (2012) J Planar Chromatogr 25:190–199

    Article  CAS  Google Scholar 

  20. Qian J, Poole CF (2007) J Chromatogr A 1143:276–283

    Article  CAS  Google Scholar 

  21. Ahmed H, Poole CF, Kozerski GE (2007) J Chromatogr A 1169:179–192

    Article  CAS  Google Scholar 

  22. Karunasekara T, Poole CF (2011) J Chromatogr A 1218:4525–4536

    Article  CAS  Google Scholar 

  23. Ahmed H, Poole CF (2006) J Chromatogr A 1104:82–90

    Article  CAS  Google Scholar 

  24. Ahmed H, Poole CF (2006) J Sep Sci 29:2158–2165

    Article  CAS  Google Scholar 

  25. Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  26. Zaitseva KV, Varfolomeev MA, Novikov VB, Solomonov BN (2011) J Chem Thermodyn 43:1083–1090

    Article  CAS  Google Scholar 

  27. Varfolomeev MA, Abaidullina DI, Solomonov BN, Verevkin SP, Emel’yanenko VN (2010) J Phys Chem B 114:16503–16516

    Article  CAS  Google Scholar 

  28. Sabbah R, An XW, Chickos JS, Leitao MLP, Roux MV, Torres LA (1999) Thermochim Acta 331:93–204

    Article  CAS  Google Scholar 

  29. Briggner LE, Wadso I (1991) J Biochem Biophys Methods 22:101–118

    Article  CAS  Google Scholar 

  30. Solomonov BN, Antipin IS, Gorbachuk VV, Konovalov AI (1982) J Gen Chem USSR (Engl Transl) 52:1917–1922

    Google Scholar 

  31. Solomonov BN, Novikov VB, Solomonov AB (2002) Russ J Gen Chem 72:854

    Article  CAS  Google Scholar 

  32. Solomonov BN, Konovalov AI, Novikov VB, Vedernikov AN, Borisover MD, Gorbachuk VV, Antipin IS (1984) J Gen Chem USSR (Engl Transl) 54:1444–1453

    Google Scholar 

  33. Solomonov BN, Konovalov AI, Novikov VB, Gorbachuk VV, Neklyudov SA (1985) J Gen Chem USSR (Engl Transl) 55:1681–1695

    Google Scholar 

  34. Skirono K, Morimatsu T, Takemura F (2008) J Chem Eng Data 53:1867–1871

    Article  Google Scholar 

  35. Shinoda K, Hildebrand JH (1965) J Phys Chem 69:605–608

    Article  CAS  Google Scholar 

  36. Trampe DM, Eckert CA (1991) J Chem Eng Data 36:112–118

    Article  CAS  Google Scholar 

  37. Wóycicki W (1980) J Chem Thermodyn 12:767–773

    Article  Google Scholar 

  38. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:60

  39. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:61

  40. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:62

  41. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:76

  42. Van Ness HC, Abbott MM (1974) Int DATA Ser Sel Data Mixtures 74:66

    Google Scholar 

  43. Van Ness HC, Abbott MM (1974) Int DATA Ser Sel Data Mixtures 74:87

    Google Scholar 

  44. Van Ness HC, Abbott MM (1974) Int DATA Ser Sel Data Mixtures 74:88

    Google Scholar 

  45. Ramos JJM, Stien M-L, Reisse J (1976) Chem Phys Lett 42:373–375

    Article  Google Scholar 

  46. Avedis G, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:10

    Google Scholar 

  47. Spencer JN, Berger SK, Powell CR, Henning BD, Furman GS, Loffredo WM, Rydberg EM, Neubert RA, Shoop CE, Blauch DM (1981) J Phys Chem 85:1236–1241

    Article  CAS  Google Scholar 

  48. Comelli F, Francesconi R (1995) J Chem Eng Data 40:509–511

    Article  CAS  Google Scholar 

  49. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:51

  50. Munoz Embid J, Roux AH, Grolier J-PE (1990) Int DATA Ser Sel Data Mixtures 90:52

  51. Comelli F, Francesconi R, Kehiaian HV (1991) J Chem Eng Data 36:485–487

    Article  CAS  Google Scholar 

  52. Catalán J, Couto A, Gomez J, Saiz JL, Laynez J (1992) J Chem Soc Perkin Trans 2:1181–1185

    Google Scholar 

  53. Catalán J, Gómez J, Saiz JL, Couto A, Ferraris M, Laynez J (1995) J Chem Soc Perkin Trans 2:2301–2305

    Google Scholar 

  54. Drago RS, Nusz JA, Courtright RC (1974) J Am Chem Soc 96:2082–2086

    Article  CAS  Google Scholar 

  55. Jambon C (1975) Philippine. J Chem Thermodyn 7:2346–2348

    Article  Google Scholar 

  56. Gallardo MA, Urieta JS, Losa CG (1983) J Chim Phys 80:621–625

    CAS  Google Scholar 

  57. Inglese A, Wilhelm E, Grolier J-PE, Kehiaian HV (1980) J Chem Thermodyn 12:217–222

    Article  CAS  Google Scholar 

  58. Kulikov MV, Kropotova MYu, Korolev VP (1997) Russ J Phys Chem 67:1845–1849

    Google Scholar 

  59. Kulikov MV, Kropotova MYu, Korolev VP (1996) Russ J Phys Chem 66:1388–1392

    Google Scholar 

  60. Inglese A, Wilhelm E, Grolier J-PE, Kehiaian HV (1980) J Chem Thermodyn 12:1047–1050

    Article  CAS  Google Scholar 

  61. Kiselev VD, Kashaeva EA, Iskhakova GG, Potapova LN, Konovalov AI (2006) J Phys Org Chem 19:179–186

    Article  CAS  Google Scholar 

  62. Marsh KN (1984) Int DATA Ser Sel Data Mixtures 84:200

    Google Scholar 

  63. Duer WC, Bertrand GL (1974) J Am Chem Soc 96:1300–1304

    Article  CAS  Google Scholar 

  64. Arnett EM, Joris L, Mitchell E, Murty TSSR, Gorrie TM, Gorrie PVR (1970) J Am Chem Soc 92:2365–2377

    Article  CAS  Google Scholar 

  65. Inglese A, Marongiu B (1987) Thermochim Acta 122:9–22

    Article  CAS  Google Scholar 

  66. Pathak G, Tripathi AD, Phalgune UD, Pradham SD (1995) Thermochim Acta 258:109–115

    Article  CAS  Google Scholar 

  67. Costas M, Perez-Casas S, Dohnal V, Fenclova D (1993) Thermochim Acta 213:23–34

    Article  CAS  Google Scholar 

  68. Baluja S, Matsuo T, Tamura K (2001) J Chem Thermodyn 33:1545–1553

    Article  CAS  Google Scholar 

  69. Spencer JN, Mihalick JE, Paul IM, Nicholson TJ, Ke X, He Q, Carter FJ, Daniels SE, Fenton LJ, Ealy JL, Puppala S, Yoder CH (1994) J Solut Chem 23:711–720

    Article  Google Scholar 

  70. Comelli F, Francesconi R (1995) J Chem Eng Data 40:28–30

    Article  CAS  Google Scholar 

  71. Letcher TM, Govender PU, Domańska U (1999) J Chem Eng Data 44:274–285

    Article  CAS  Google Scholar 

  72. Handa YP, Knobler CM, Scott RL (1977) J Chem Thermodyn 9:451–464

    Article  CAS  Google Scholar 

  73. Duer WC, Bertrand GL (1975) J Am Chem Soc 97:3894–3897

    Article  CAS  Google Scholar 

  74. Kulikov MV (1997) Tratneva EYu. Russ Chem Bull 46:1518–1525

    Article  CAS  Google Scholar 

  75. Gascón I, Artigas H, Martín S, Cea P, Lafuente C (2002) J Chem Thermodyn 34:1351–1360

    Article  Google Scholar 

  76. Reis M, Moreira L, Nunes N, Leitao R, Martins F (2012) J Therm Anal Calorim 108:761–767

    Article  CAS  Google Scholar 

  77. Anand SC, Grolier J-PE, Kiyohara O, Benson GC (1973) Can J Chem 51:4140–4144

    Article  CAS  Google Scholar 

  78. Ohji H, Tamura K (2003) J Chem Thermodyn 35:1591–1599

    Article  CAS  Google Scholar 

  79. Ohji H, Katsutoshi T, Ogawa H (2000) J Chem Thermodyn 32:319–328

    Article  CAS  Google Scholar 

  80. Martins F, Moreira L, Nunes N, Leitao RE (2010) J Therm Anal Calorim 100:483–491

    Article  CAS  Google Scholar 

  81. Kumar MD, Kumar PA, Rajendran M (2003) J Chem Eng Data 48:1422–1424

    Article  CAS  Google Scholar 

  82. Comelli F, Francesconi R (1996) J Chem Eng Data 41:101–104

    Article  CAS  Google Scholar 

  83. Wilhelm E, Inglese A, Grolier JP-E, Kehiaian HV (1982) J Chem Thermodyn 14:517–522

    Article  CAS  Google Scholar 

  84. Galvoronskii AN, Granzhan VA (2005) Russ J Appl Chem 78:404–408

    Article  Google Scholar 

  85. Catalán J, Gómez J, Couto A, Laynez J (1990) J Am Chem Soc 112:1678–1681

    Article  Google Scholar 

  86. Franccesconi R, Castellari C (2001) J Chem Eng Data 46:577–581

    Article  Google Scholar 

  87. Jangra SK, Neeti JS, Sharma D, Sharma VK (2012) Thermochim Acta 530:25–31

    Article  CAS  Google Scholar 

  88. Sugiura T, Ogawa H (2009) J Chem Thermodyn 41:1297–1302

    Article  CAS  Google Scholar 

  89. Ogawa H, Murakami S, Takigawa T, Ohba M (1997) Fluid Phase Equilib 136:279–287

    Article  CAS  Google Scholar 

  90. Francesconi R, Comelli F (1993) J Chem Eng Data 38:221–224

    Article  CAS  Google Scholar 

  91. Kiselev VD, Veisman EA, Solomonov BN, Konovalov AI (1985) Zhur Obsch Khim 55:1965–1969

    CAS  Google Scholar 

  92. Comelli F, Francesconi R (1992) Thermochim Acta 196:177–180

    Article  CAS  Google Scholar 

  93. Shebanova OK, Kuritsin LV (1996) Izvest Vyssh Ucheb Zaved Khim Khim Tekhnol 39:122–124

    Google Scholar 

  94. Kastorina EV, Smirnov VI, Fridman AYA (1992) Zhur Fiz Khim 66:3171–3175

    CAS  Google Scholar 

  95. Nagy PE, Bertrand GL, Poling BE (1987) J Chem Eng Data 32:439–443

    Article  CAS  Google Scholar 

  96. Ivanov EV, Smirnov VI (2010) Thermochim Acta 511:194–197

    Article  CAS  Google Scholar 

  97. Kiselev VD, Potapova LN, Kashaeva HA, Konovalov AI (2012) Mendeleev Commun 22:50–51

    Article  CAS  Google Scholar 

  98. Figeys D, Koschmidder M, Benoit RL (1992) Can J Chem 70:1586–1589

    Article  CAS  Google Scholar 

  99. Chickos JS, Acree WE Jr (2003) J Phys Chem Ref Data 32:519–878

    Article  CAS  Google Scholar 

  100. Acree WE Jr., Chickos JS (2010) J Phys Chem Ref Data 39:043101/1–043101/942

    Google Scholar 

  101. Chickos JS, Acree WE Jr (2002) J Phys Chem Ref Data 31:537–698

    Article  CAS  Google Scholar 

  102. Abraham MH, McGowan JC (1987) Chromatographia 23:243–246

    Article  CAS  Google Scholar 

  103. Drago RS, Parr LB, Chamberlain CS (1977) J Am Chem Soc 99:3203–3210

    Article  CAS  Google Scholar 

  104. Solomonov BN, Novikov VB, Varfolomeev MA, Mileshko NM (2005) J Phys Org Chem 18:49–61

    Article  CAS  Google Scholar 

  105. Joesten M, Schaad L (1974) Hydrogen bonding. Marcel Dekker, New York

    Google Scholar 

  106. Iogansen AV (1999) Spectrochim Acta A 55:1585–1612

    Article  Google Scholar 

Download references

Acknowledgments

Nishu Dabadge and Amy Tian thank the University of North Texas’s Texas Academy of Math and Science (TAMS) program for a summer research fellowship. Mikhail A. Varfolomeev and Ilnaz T. Rakipov acknowledge the financial support by the Russian Federal Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia 2009–2013” (N P1349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Acree Jr..

Additional information

This study is honoring Maria Victoria Roux in occasion of her retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A., Tian, A., Dabadge, N. et al. Enthalpy of solvation correlations for organic solutes and gases dissolved in dichloromethane and 1,4-dioxane. Struct Chem 24, 1841–1853 (2013). https://doi.org/10.1007/s11224-013-0233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0233-1

Keywords

Navigation