Skip to main content
Log in

On molecular dynamics of the diamond D5 seeds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Diamond D5 is a hyperdiamond with the rings being mostly pentagonal and built up on the frame of mtn structure, appearing in clathrate hydrates of type II. As the seed of D5, the centrohexaquinane C17 was proposed (Diudea, Stud Univ Babes-Bolyai Chem 55(4):11–17, 2010). In this article, we study the molecular dynamics MD of four structures based on C17 skeleton, as all carbon or partly oxygenated derivatives. The results are discussed in terms of structural stability as given by DFT calculations as well as by the stable fluctuations of root mean square deviations and total, potential and kinetic energies provided by MD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diudea MV (2010) Nanomolecules and nanostructures—polynomials and indices. University of Kragujevac, Kragujevac

    Google Scholar 

  2. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  3. Diudea MV (ed) (2005) Nanostructures, novel architecture. NOVA, New York

    Google Scholar 

  4. Decarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822

    Article  CAS  Google Scholar 

  5. Aleksenskiǐ AE, Baǐdakova MV, Vul AY, Davydov VY, Pevtsova YA (1997) Diamond–graphite phase transition in ultradisperse-diamond clusters. Phys Solid State 39:1007–1015

    Article  Google Scholar 

  6. Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diamond Relat Mater 16:2018–2022

    Article  CAS  Google Scholar 

  7. Osawa E (2008) Monodisperse single nanodiamond particulates. Pure Appl Chem 80:1365–1379

    Article  CAS  Google Scholar 

  8. Williams OA, Douhéret O, Daenen M, Haenen K, Osawa E, Takahashi M (2007) Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett 445:255–258

    Article  CAS  Google Scholar 

  9. Dubrovinskaia N, Dub S, Dubrovinsky L (2006) Superior wear resistance of aggregated diamond nanorods. Nano Lett 6:824–826

    Article  CAS  Google Scholar 

  10. Khachatryan AK, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation diamond. Relat Mater 17:931–936

    Article  CAS  Google Scholar 

  11. Frondel C, Marvin UB, Lonsdaleite (1967) A hexagonal polymorph of diamond. Nature 214:587–589

    Article  CAS  Google Scholar 

  12. Diudea MV, Bende A, Janežič D (2010) Omega polynomial in diamond-like networks. Fuller Nanotub Carbon Nanostruct 18:236–243

    Article  CAS  Google Scholar 

  13. Hyde ST, Keeffe MO, Proserpio DM (2008) A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew Chem Int Ed 47:7996–8000

    Article  CAS  Google Scholar 

  14. Diudea MV, Ilić A (2011) All-pentagonal face multi tori. J Comput Theor Nanosci 8:736–739

    Article  CAS  Google Scholar 

  15. Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Culture Sci 19(4):285–305

    Google Scholar 

  16. Gund P, Gund TM (1981) How many rings can share a quaternary atom? J Am Chem Soc 103:4458–4465

    Article  CAS  Google Scholar 

  17. Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization: synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294

    Article  CAS  Google Scholar 

  18. Kuck D (1984) A facile route to benzoannelated centrotriquinanes. Angew Chem Intl Ed Eng 23:508–509

    Article  Google Scholar 

  19. Kuck D, Schuster A, Paisdor B, Gestmann D (1995) Benzoannelated centropolyquinanes. Part 21. Centrohexaindane: three complementary syntheses of the highest member of the centropolyindane family. J Chem Soc Perkin Trans 6:721–732

    Article  Google Scholar 

  20. Kuck D (2006) Three-dimensional hydrocarbon cores based on multiply fused cyclopentane and indane units: centropolyindanes. Chem Rev 106:4885–4925

    Article  CAS  Google Scholar 

  21. Diudea MV (2010) Diamond D5, a novel allotrope of carbon. Stud Univ Babes-Bolyai Chem 55(4):11–17

    CAS  Google Scholar 

  22. Delgado-Friedrichs O, Foster MD, O’Keeffe M, Proserpio DM, Treacy MMJ, Yaghi OM (2005) J Solid State Chem 178:2533–2554

    Article  CAS  Google Scholar 

  23. Blase X, Benedek G, Bernasconi M (2010) Structural, mechanical and supraconducting properties of clathrates. In: Colombo L, Fasolino A (eds) Computer-based modeling of novel carbon systems and their properties. Beyond nanotubes, Chap 6. Springer, pp 171–206

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

  25. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A Jr, Simmerling C, Wang B, Woods R (2005) J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  26. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049

    Article  CAS  Google Scholar 

  27. Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25:1157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge to Professor Davide E. Proserpio, Universita’ degli Studi di Milano, for helping in classifying the networks; many thanks are addressed to the referees for their valuable and pertinent suggestions in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Szefler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szefler, B., Diudea, M.V. On molecular dynamics of the diamond D5 seeds. Struct Chem 23, 717–722 (2012). https://doi.org/10.1007/s11224-011-9894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9894-9

Keywords

Navigation