Skip to main content
Log in

Study of Shape Evolution and Ground State Properties of Even-Even Tellurium Isotopic Mass Chain by using Relativistic Hartree Bogoliubov framework

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present paper, the systematic investigation of potential energy surfaces (PESs) has been presented in order to study the development of shape evolution with the variation in neutron number in the ground states of axially deformed even-even 104−144Te isotopes. Relativistic-Hartree-Bogoliubov model has been employed to study PES plots with the help of density-dependent point coupling effective parameters (DD-PCX). The obtained results have predicted the shape transition from prolate to oblate, oblate to spherical and spherical to prolate deformation in these isotopes. The calculated results have also predicted the shape coexistence in 116, 118, 126, 128Te isotopes. Besides this, various ground state properties like mass excess, two neutron separation energies, root mean square radii of neutrons and protons and charge radii have also been studied as a function of neutron number. The calculated results are also compared with the published theoretical results by using DD-ME2, DD-PC1, PC-PK1, BSkG2, FRDM and Gogny D1S interactions and are found to be in good agreement with predictions made by the relativistic mean field calculations employing the DD-ME2, DD-PC1, PC-PK1 interaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Gonzalez-Llarena, J.L. Egido, G.A. Lalazissis, P. Ring, Phys. Lett. 379, 13 (1996). https://doi.org/10.1016/0370-2693(96)00461-3

    Article  Google Scholar 

  2. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010). https://doi.org/10.1103/RevModPhys.82.2155

    Article  ADS  Google Scholar 

  3. S. Ansari et al., Phys. Rev. C 96, 054323 (2017). https://doi.org/10.1103/PhysRevC.96.054323

    Article  ADS  Google Scholar 

  4. H. Mei, J. Xiang, J.M. Yao, Z.P. Li, J. Meng, Phys. Rev. C 85, 034321 (2012). https://doi.org/10.1103/PhysRevC.85.034321

    Article  ADS  Google Scholar 

  5. Y. El Bassem, M. Oulne, Nucl. Phys. A 957, 22 (2017). https://doi.org/10.1016/j.nuclphysa.2016.07.005

    Article  ADS  Google Scholar 

  6. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006). https://doi.org/10.1103/PhysRevC.73.034322

    Article  ADS  Google Scholar 

  7. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008). https://doi.org/10.1103/PhysRevC.78.054312

    Article  ADS  Google Scholar 

  8. M. Bhuyan, Phys. Rev. C 92, 034323 (2015). https://doi.org/10.1103/PhysRevC.92.034323

    Article  ADS  Google Scholar 

  9. B.-M. Yao, J.-Y. Guo, Mod. Phys. Lett. A 25, 1177 (2010). https://doi.org/10.1142/S021773231003255X

    Article  ADS  Google Scholar 

  10. H. Abusara, S. Ahmad, Phys. Rev. 96, 064303 (2017). https://doi.org/10.1103/PhysRevC.96.064303

    Article  Google Scholar 

  11. H. Abusara, S. Ahmad, S. Othman, Phys. Rev. C 95, 054302 (2017). https://doi.org/10.1103/PhysRevC.95.054302

    Article  ADS  Google Scholar 

  12. J.E. García-Ramos, K. Heyde, Phys. Rev. C 100, 044315 (2019). https://doi.org/10.1103/PhysRevC.100.044315

    Article  ADS  Google Scholar 

  13. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 94, 044314 (2016). https://doi.org/10.1103/PhysRevC.94.044314

    Article  ADS  Google Scholar 

  14. H. Sabri, Z. Jahangiri, M.A. Mohammadi, Nucl. Phys. A 946, 11 (2016). https://doi.org/10.1016/j.nuclphysa.2015.11.001

    Article  ADS  Google Scholar 

  15. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010). https://doi.org/10.1103/PhysRevC.81.014303

    Article  ADS  Google Scholar 

  16. J. Geng, J. Xiang, B.Y. Sun, W.H. Long, Phys. Rev. C 101, 064302 (2020). https://doi.org/10.1103/PhysRevC.101.064302

    Article  ADS  Google Scholar 

  17. S. Kim, M. Mun, M. Cheoun, E. Ha, Phys. Rev. C 105, 034340 (2022). https://doi.org/10.1103/PhysRevC.105.034340

    Article  ADS  Google Scholar 

  18. P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  19. W. Ryssens, G. Scamps, S. Goriely, M. Bender, Eur. Phys. J. A 246, 58 (2022). https://doi.org/10.1140/epja/s10050-022-00894-5

    Article  Google Scholar 

  20. R. Hofstadter, H.R. Fetcher, J.A. McIntyre, Phys. Rev. 92, 978 (1953). https://doi.org/10.1103/PhysRev.92.978

    Article  ADS  Google Scholar 

  21. R.G. Arnold, C.E. Carlson, F. Gross, Phys. Rev. C 21, 1426 (1980). https://doi.org/10.1103/PhysRevC.21.1426

    Article  ADS  Google Scholar 

  22. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004). https://doi.org/10.1016/j.adt.2004.04.002

    Article  ADS  Google Scholar 

  23. T.E. Cocolios et al., Nucl. Instrum. Meth. B 317, 565 (2013). https://doi.org/10.1016/j.nimb.2013.05.088

    Article  ADS  Google Scholar 

  24. A.R. Vernon et al., Sci. Rep. 10, 12306 (2020). https://doi.org/10.1038/s41598-020-68218-5

    Article  ADS  Google Scholar 

  25. J. Libert, B. Roussiere, J. Sauvage, Nucl. Phys. A 786, 47 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.089

    Article  ADS  Google Scholar 

  26. K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, R.A. Meyer, Phys. Rep. 102, 291 (1983). https://doi.org/10.1016/0370-1573(83)90085

    Article  ADS  Google Scholar 

  27. J.L. Wood, K. Heyde, M. Nazarewicz, P. Huyse, P. van Duppen, Phys. Rep. 215, 101 (1992). https://doi.org/10.1016/S0375-9474(99)00143-8

    Article  ADS  Google Scholar 

  28. S. Sharma, R. Devi, S.K. Khosa, Nucl. Phys. A 988, 9 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.008

    Article  ADS  Google Scholar 

  29. K. Zhang et al., At. Data Nucl. Data Tables 144, 101488 (2022). https://doi.org/10.1016/j.adt.2022.101488

    Article  Google Scholar 

  30. E. Yuksel, T. Marketin, N. Paar, Phys. Rev. C 99, 034318 (2019). https://doi.org/10.1103/PhysRevC.99.034318

    Article  ADS  Google Scholar 

  31. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  32. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008). https://doi.org/10.1103/PhysRevC.78.034318

    Article  ADS  Google Scholar 

  33. T. Niksic, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185, 1808 (2014). https://doi.org/10.1016/j.cpc.2014.02.027

    Article  ADS  Google Scholar 

  34. S. Raman, C.W. Nestor JR., P. Tikkanen, At. Data Nucl. Data Tables 78, 42 (2001). https://doi.org/10.1006/adnd.2001.0858

    Article  Google Scholar 

  35. https://www.nndc.bnl.gov/nudat3/

  36. A. Martinou, D. Bonatos, N. Minkov, T. Mertzimekis, I.E. Assimakis, S. Peroulis, A. Sarantopoulou, HNPS Adv. Nucl. Phys. 26, 96 (2019). https://doi.org/10.12681/hnps.1804

    Article  Google Scholar 

  37. D. Bonatsos, I.E Assimakis, A. Martinou, S. Sarantopulou, S. Peroulis, N. Minkov, arXiv:1810.11858 [nucl –th] (2018). https://doi.org/10.48550/arXiv.1810.11858

  38. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimians, X. Xing, Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

    Article  ADS  Google Scholar 

  39. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  40. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

  41. T. Suzuki, Prog. Theor. Exp. Phys. 2022, 063D01 (2022). https://doi.org/10.1093/ptep/ptac083

    Article  Google Scholar 

Download references

Funding

This work is supported by a financial grant received from the Science and Engineering Research Board (SERB) project number CRG/2019/000326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rani Devi.

Ethics declarations

Competing Interests

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Devi, R. Study of Shape Evolution and Ground State Properties of Even-Even Tellurium Isotopic Mass Chain by using Relativistic Hartree Bogoliubov framework. Braz J Phys 54, 92 (2024). https://doi.org/10.1007/s13538-024-01470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01470-6

Keywords

Navigation