Skip to main content

Advertisement

Log in

Structure and spectroscopy of NaNd(SP)4 chelate: a new type of lanthanide luminophore

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Lanthanide β-diketones and their derivatives are extensively studied coordination compounds, due to their luminescent properties and many possible applications. The tetrakisNd(III) complex with phosphorylated sulfonylamides derivatives of β-diketones was synthesized. The X-ray diffraction showed that the compound of formula {[Na[Ln(SP)4]} n (SP = C6H5S(O)2NP(O)(OCH3)2; Ln = Nd(III) crystallize in the monoclinic P21/c space group with the following unit-cell parameters: a = 22.006(4)A, b = 11.075(2)A, c = 22.334(5)A, and β = 118.71(3)°. The molecular structure of the investigated compound is polymeric. The lanthanide ions as well as the sodium ions are coordinated by sulfonyl and phosphoryl groups of the ligand, and because of the bridging behavior, link different units of the polymer. High-resolution absorption, emission, and excitation spectra of neodymium crystals were measured at 298, 77, and 4K temperatures. The sensitized emission of [Na[Nd(III)(L)4]} n chelate in the IR range of the spectrum was recorded. This kind of the compounds can be used in organic light emitting diodes in compact display technology. The spectral characteristic of the compound is controlled by donor–acceptor properties and electron-hole transporting chemical groups. Those factors affect the energy level location, energy transfer (ET), electron–phonon coupling, and finally the luminescence quantum yield. The optical behavior of the title compound was characterised by crystal field (CF), correlation crystal field (CCF), and electron transition probability calculations. X-ray structural data and the nephelauxetic effect check the role of the character of the bonding. The IR spectra were used to analyze the vibronic components in electronic transitions. The role of ligands, singlet and triplet states in energy transfer, are discussed. The ET mechanism and emission quenching pathways are proposed. Some spectroscopic parameters will be compared with earlier reported NaNdWo4 × H2O (Wo = CCl3 CONPO(OCH3)2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Legendziewicz J, Amirkhanov V, Jańczak C, Macalik L, Hanuza J (1995) J Appl Spectr (rus) 62:5

    Google Scholar 

  2. Oczko G, Legendziewicz J, Trush V, Amirkhanov V (2003) New J Chem 27:948

    Article  CAS  Google Scholar 

  3. Binnemans K (2009) Chem Rev 109:4283

    Article  CAS  Google Scholar 

  4. de Sa GF, Malta OL, Mello Donega C, Simas AM, Longo RL, Santa-Crus PA, da Silva EF Jr (2000) Coord Chem Rev 196:165

    Article  Google Scholar 

  5. Riebrova ON, Biyushkin WN, Malinowski TI et al. (1982) Dokl A N USSR, 266:1391

    Google Scholar 

  6. Amirkhanov V, Ovchinnikov V, Legendziewicz J, Graczyk A, Hanuza J, Macalik L (1996) Acta Phys Polonica 90:455

    CAS  Google Scholar 

  7. Legendziewicz J (2000) J Alloys Compd 300–301:71 ibid. (2002) 341:34

  8. Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Coord Chem Rev 249:2496

    Article  Google Scholar 

  9. Legendziewicz J, Oczko G, Wiglusz R, Amirkhanov V (2001) J Alloys Compd 323–324:792

    Article  Google Scholar 

  10. Amirkhanov V, Trush V, Kapshuk A, Skopenko V (1996) Zh Neorg Khim 41:2052

    CAS  Google Scholar 

  11. Hemmilä I, Laitala V (2005) J Fluoresc 15:529

    Article  Google Scholar 

  12. Bünzli J-CG (2004) In: Sigel A, Sigel H (eds) Metals ions in biological systems, vol 42, Ch 2. Marcel Dekker Inc, New York

  13. Hemmilä I, Mukkala V-M (2001) Crit Rev Clin Lab Sci 38:441

    Article  Google Scholar 

  14. Faulkner S, Pope SJA, Burton-Pye PB (2005) Appl Spectr Rev 40(1):1

    Article  CAS  Google Scholar 

  15. Faulkner S, Beeby A, Dickins RS, Parker D, Williams JAG (1999) J. Fluorescence 9:45

    Article  CAS  Google Scholar 

  16. Shavaleev NM, Scopelliti R, Gumy F, Bünzli J-C G (2008) Eur J Inorg Chem 1523

  17. Bünzli J-C G, Ihringer F (1996) Inorg Chim Acta 246:195

    Article  Google Scholar 

  18. Hong Z, Liang C, Li R, Zhao D, Fau D, Wang D, Chu B, Zhang F, Hong LS, S-Te Lee (2001) Adv Mater 13:1241

    Article  CAS  Google Scholar 

  19. Tsaryuk V, Zolin V, Legendziewicz J (1998) Spectrochim Acta A 54:2247

    Article  Google Scholar 

  20. Tsaryuk V, Legendziewicz J, Zolin V, Sokolnicki J, Kudryashova V (2002) Proceedings of 11th international workshop on inorganic and organic electroluminescence, September 23, Ghent, Belgium, 2002

  21. Kirsanov A, Shevchenko V (1954) Zh Obsh Khim 24:474

    CAS  Google Scholar 

  22. Kirsanov A (1952) Zh Obsh Khim 22:269

    CAS  Google Scholar 

  23. Scheidt WR, Turowska-Tyrk I (1994) Inorg Chem 33:1314

    Article  CAS  Google Scholar 

  24. Sheldrick GM (1990) Acta Crystalologr Sect A 46:467

    Article  Google Scholar 

  25. Sheldrick GM (1997) SHELXL-97 PC Version. University of Göttingen, Germany

    Google Scholar 

  26. Drew MGB (1977) Coord Chem Rev 24:179

    Article  CAS  Google Scholar 

  27. Legendziewicz J, Bukietyńska K, Oczko G (1981) J Inorg Nucl Chem 43:2393

    Article  CAS  Google Scholar 

  28. Legendziewicz J (1988) Wiadomości Chemiczne 42:605

    CAS  Google Scholar 

  29. Judd RB (1962) Phys Rev 127:750

    Article  CAS  Google Scholar 

  30. Ofelt GSJ (1962) Chem Phys 37:511

    CAS  Google Scholar 

  31. Carnall WT, Fields PR, Rajnak K (1967) Chemistry division report

  32. Carnall WT, Fields PR, Rajnak K (1967) J Chem Phys 49:4412

    Article  Google Scholar 

  33. Mason SF, Stewart BS (1985) Mol Phys 385:611

    Article  Google Scholar 

  34. Dallara JJ, Reid M, Richardson FS (1984) J Phys Chem 88:3587

    Article  CAS  Google Scholar 

  35. Kirby AF, Richardson FS (1983) J Phys Chem 87:2557

    Article  CAS  Google Scholar 

  36. Carnall WT, Goodman GL, Rajnak K, Rana RS (1989) J Chem Phys 90:3443

    Article  CAS  Google Scholar 

  37. Wybourne BG (1965) Spectroscopic properties of rare earths (Interscience) New York

  38. Reid MF (1987) J Chem Phys 87(5):2875

    Article  CAS  Google Scholar 

  39. Judd BR (1977) J Chem Phys 66:3163

    Article  CAS  Google Scholar 

  40. Rukmini E, Jayasankar C, Reid MF (1994) J Phys Condens Matter 6:5919

    Article  CAS  Google Scholar 

  41. Sobczyk M, Solarz P, Lisiecki R, Ryba-Romanowski W (in preparation)

  42. Li CL, Reid MF (1990) Phys Rev B 42:1903

    Article  CAS  Google Scholar 

  43. Karbowiak M, Drożdżyński J, Sobczyk M (2002) J Chem Phys 117:2800

    Article  CAS  Google Scholar 

  44. Sobczyk M, Karbowiak M, Drożdżyński J (2005) J Solid State Chem 178:536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sobczyk or J. Legendziewicz.

Additional information

Dedicated to Professor Adam Bartecki on his 90th anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulesza, D., Sobczyk, M., Legendziewicz, J. et al. Structure and spectroscopy of NaNd(SP)4 chelate: a new type of lanthanide luminophore. Struct Chem 21, 425–438 (2010). https://doi.org/10.1007/s11224-009-9548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9548-3

Keywords

Navigation