Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENCE OF THE ONE-DIMENSIONAL LANTHANUM(III) COORDINATION POLYMER WITH 2,6-BIS (3,5-DICARBOXYPHENOXY)PYRIDINE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By the interaction of 2,6-bis(3,5-dicarboxyphenoxy)pyridine (H4L) with lanthanum(III) nitrate in a 1:1 acetonitrile–water mixture a coordination polymer {[La(HL)(H4L)(H2O)4]·2H2O}n is synthesized. According to single crystal X-ray diffraction data, the compound is a linear coordination polymer whose chains are organized into a 3D supramolecular network by π–π stacking interactions and hydrogen bonds. The coordination polymer exhibits intraligand luminescence with the emission maximum at 392 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. K. A. Kovalenko, A. S. Potapov, and V. P. Fedin. Russ. Chem. Rev., 2022, 91, RCR5026. https://doi.org/10.1070/RCR5026

    Article  Google Scholar 

  2. Y. G. Gorbunova, Y. Y. Enakieva, M. V. Volostnykh, A. A. Sinelshchikova, I. A. Abdulaeva, K. P. Birin, and A. Yu. Tsivadze. Russ. Chem. Rev., 2022, 91, RCR5038. https://doi.org/10.1070/rcr5038

    Article  Google Scholar 

  3. Y. Liu, X.-Y. Xie, C. Cheng, Z.-S. Shao, and H.-S. Wang. J. Mater. Chem. C, 2019, 7, 10743. https://doi.org/10.1039/C9TC03208H

    Article  Google Scholar 

  4. A. Kuznetsova, V. Matveevskaya, D. Pavlov, A. Yakunenkov, and A. Potapov. Materials, 2020, 13, 2633. https://doi.org/10.3390/ma13122699

    Article  Google Scholar 

  5. G. Lee, D. K. Yoo, I. Ahmed, H. J. Lee, and S. H. Jhung. Chem. Eng. J., 2023, 451, 138538. https://doi.org/10.1016/j.cej.2022.138538

    Article  Google Scholar 

  6. D. N. Dybtsev and K. P. Bryliakov. Coord. Chem. Rev., 2021, 437, 213845. https://doi.org/10.1016/j.ccr.2021.213845

    Article  Google Scholar 

  7. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shulgin, E. S. Shutova, and D. G. Yakhvarov. J. Struct. Chem., 2022, 63(5), 671. https://doi.org/10.1134/S0022476622050018

    Article  Google Scholar 

  8. W.-J. Gu, J.-Z. Gu, M. V. Kirillova, and A. M. Kirillov. CrystEngComm, 2022, 24, 5297. https://doi.org/10.1039/D2CE00722C

    Article  Google Scholar 

  9. J. Gu, M. Wen, X. Liang, Z. Shi, M. Kirillova, and A. Kirillov. Crystals, 2018, 8, 83. https://doi.org/10.3390/cryst8020083

    Article  Google Scholar 

  10. Z. Yang, T. Hashimoto, R. Oketani, T. Nakamura, and I. Hisaki. Chem. – Eur. J., 2022, 28, e202201571. https://doi.org/10.1002/chem.202201571

    Article  Google Scholar 

  11. B. N. Bhadra, I. Ahmed, H. J. Lee, and S. H. Jhung. Coord. Chem. Rev., 2022, 450, 214237. https://doi.org/10.1016/j.ccr.2021.214237

    Article  Google Scholar 

  12. Y. Zhao and D. Li. J. Mater. Chem. C, 2020, 8, 12739. https://doi.org/10.1039/d0tc03430d

    Article  Google Scholar 

  13. C. Yin, Q. Huang, G. Zhu, L. Liu, S. Li, X. Yang, and S. Wang. J. Colloid Interface Sci., 2022, 607, 1762. https://doi.org/10.1016/j.jcis.2021.09.108

    Article  Google Scholar 

  14. I. Aswin Kumar, A. Jeyaseelan, N. Viswanathan, M. Naushad, and A. J. M. Valente. J. Solid State Chem., 2021, 302, 122446. https://doi.org/10.1016/j.jssc.2021.122446

    Article  Google Scholar 

  15. Q. He, H. Zhao, Z. Teng, Y. Wang, M. Li, and M. R. Hoffmann. Chemosphere, 2022, 303, 134987. https://doi.org/10.1016/j.chemosphere.2022.134987

    Article  Google Scholar 

  16. F. M. Amombo Noa, E. S. Grape, M. Åhlén, W. E. Reinholdsson, C. R. Göb, F. X. Coudert, O. Cheung, A. K. Inge, and L. Öhrström. J. Am. Chem. Soc., 2022, 144, 8725. https://doi.org/10.1021/jacs.2c02351

    Article  Google Scholar 

  17. Y. Zhang, Z. Gao, W. Liu, G. Liu, M. Zhu, S. Wu, W. Yao, and E. Gao. Inorg. Chem. Commun., 2021,134, 109017. https://doi.org/10.1016/j.inoche.2021.109017

    Article  Google Scholar 

  18. CrysAlisPro, Version 1.171.34.49. Agilent Technologies, 2011.

  19. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  Google Scholar 

  20. P. Alemany, D. Casanova, S. Alvarez, C. Dryzun, and D. Avnir. Continuous Symmetry Measures: A New Tool in Quantum Chemistry. In: Reviews in Computational Chemistry, Vol. 30 / Eds. A. L. Parrill and K. B. Lipkowitz. John Wiley & Sons, 2017, 289. https://doi.org/10.1002/9781119356059.ch7

    Chapter  Google Scholar 

  21. A. Ruiz-Martínez, D. Casanova, and S. Alvarez. Chem. – A Eur. J., 2008, 14, 1291. https://doi.org/10.1002/chem.200701137

    Article  Google Scholar 

  22. Y. Wan, J. Wang, H. Shu, B. Cheng, Z. He, P. Wang, and X. Tifeng. Inorg. Chem., 2021, 60, 7345. https://doi.org/10.1021/acs.inorgchem.1c00502

    Article  Google Scholar 

  23. S. Dang, J.-H. Zhang, Z.-M. Sun, and H. Zhang. Chem. Commun., 2012, 48, 11139. https://doi.org/10.1039/C2CC35432B

    Article  Google Scholar 

  24. P. A. Demakov, A. A. Ryadun, and V. P. Fedin. Inorganics, 2022, 10, 163. https://doi.org/10.3390/inorganics10100163

    Article  Google Scholar 

  25. Z.-Y. Fu, S.-M. Hu, W.-X. Du, J.-J. Zhang, S.-C. Xiang, and X.-T. Wu. Jiegou Huaxue (1982-2004), 2004, 23, 176, https://chemport-n.cas.org//chemport-n/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADC%2BD2cXit12qsrg%3D&md5=89fc042d539db70bcf425ce9770ff6fc

  26. J. Zhang, J. T. Bu, S. Chen, T. Wu, S. Zheng, Y. Chen, R. A. Nieto, P. Feng, and X. Bu. Angew. Chem., Int. Ed., 2010, 49, 8876. https://doi.org/10.1002/anie.201003900

    Article  Google Scholar 

  27. P. A. Demakov, A. S. Bogomyakov, A. S. Urlukov, A. Y. Andreeva, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Materials, 2020, 13, 486. https://doi.org/10.3390/ma13020486

    Article  Google Scholar 

  28. Z.-H. Wang, J. Fan, and W.-G. Zhang. Z. Anorg. Allg. Chem., 2009, 635, 2333. https://doi.org/10.1002/zaac.200801412

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Projects Nos. 121031700321-3 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Potapov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 103557.https://doi.org/10.26902/JSC_id103557

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X.L., Pavlov, D.I., Ryadun, A.A. et al. SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENCE OF THE ONE-DIMENSIONAL LANTHANUM(III) COORDINATION POLYMER WITH 2,6-BIS (3,5-DICARBOXYPHENOXY)PYRIDINE. J Struct Chem 63, 2028–2036 (2022). https://doi.org/10.1134/S0022476622120149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120149

Keywords

Navigation