Skip to main content
Log in

Multiple proton donors on BeH2···2HCl trimolecular dihydrogen-bonded complex: some theoretical insights

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this theoretical work, the characterization of multiple proton donors in three isomers of BeH2···2HCl trimolecular dihydrogen-bonded complex was developed through the analysis of structural parameters, electronic criteria, and analysis of vibrational harmonic spectrum, where all these data were obtained from the B3LYP/6-311++G(3d,3p) calculations. As dihydrogen bonds are formed by the interaction between two hydrogen atoms, proton donors and hydride hydrogen, the isomers of BeH2···2HCl trimolecular dihydrogen-bonded complexes are stabilized by two, three, and four centers of proton donors. By analyzing the charge density integrations calculated by the theory of Atoms in Molecules, these multiple centers of proton donors were identified by quantification of the intermolecular electronic density, Laplacian operators, and charge transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martin TW, Derewenda ZS (1999) Nat Struct Biol 6:403–406. doi:10.1038/8195

    Article  CAS  Google Scholar 

  2. Pol S, Maiti PK, Bagchi B (2006) J Chem Phys 125:234903–234911. doi:10.1063/1.2403872

    Article  Google Scholar 

  3. Narayan K, Chou C-L, Kim A, Hartman IZ, Dalai S, Khoruzhenko S et al (2006) Nat Immun 8:92–100. doi:10.1038/ni1414

    Article  Google Scholar 

  4. Chen B, Ivanov I, Klein ML, Parrinello M (2003) Phys Rev Lett 91:215503-3–215503-4

    Google Scholar 

  5. Muthiah PT, Robert JJ, Raj SB, Bocelli G, Ollá R (2001) Acta Crystallogr E57:m558–m560

    Google Scholar 

  6. Oliveira BG, Araújo RCMU, Carvalho AB, Lima EF, Silva WLV, Ramos MN et al (2006) J Mol Struct Theochem 775:39–45. doi:10.1016/j.theochem.2006.06.028

    Article  Google Scholar 

  7. Pimentel GC, McClelan AC (1960) The hydrogen bonding. Freeman, San Francisco

  8. Barbiellini B, Shukla A (2000) Phys Rev B 66:235101–235105. doi:10.1103/PhysRevB.66.235101

    Article  Google Scholar 

  9. Kar T, Scheiner S (2003) J Chem Phys 119:1473–1482. doi:10.1063/1.1580093

    Article  Google Scholar 

  10. Ikorta I, Elguero J, Foces-Foces C (1996) Chem Commun 1633–1634

  11. Zierkiewicz W, Hobza P (2004) Phys Chem Chem Phys 6:5288–5296. doi:10.1039/b410112j

    Article  Google Scholar 

  12. Grabowski SJ, Robinson TL, Leszczynski J (2004) Chem Phys Lett 108:44–48. doi:10.1016/j.cplett.2004.01.013

    Article  Google Scholar 

  13. Govender MG, Ford TA (2003) J Mol Struct Theochem 630:11–16. doi:10.1016/S0166-1280(03)00145-3

    Article  Google Scholar 

  14. Hugas D, Simon S, Duran M (2005) Struct Chem 16:257–263. doi:10.1007/s11224-005-4456-7

    Article  Google Scholar 

  15. Solimannejad M, Alkorta I (2006) Chem Phys 324:459–464. doi:10.1016/j.chemphys.2005.11.007

    Article  Google Scholar 

  16. Richardson T, de Gala S, Crabtree RH, Siegbahn PEM (1995) J Am Chem Soc 117:12875–12876. doi:10.1021/ja00156a032

    Article  Google Scholar 

  17. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS et al (1995) Angew Chem Int Ed Engl 34:2507–2509. doi:10.1002/anie.199525071

    Article  Google Scholar 

  18. Grabowski SJ (2000) J Phys Chem A 104:5551–5557. doi:10.1021/jp993984r

    Article  Google Scholar 

  19. Popelier PLA (1998) J Phys Chem A 102:1873–1878. doi:10.1021/jp9805048

    Article  Google Scholar 

  20. Jursic BS (1998) J Mol Struct Theochem 434:37–42. doi:10.1016/S0166-1280(98)00086-4

    Article  Google Scholar 

  21. Custelcean R, Jackson JE (1998) J Am Chem Soc 120:12935–12941. doi:10.1021/ja982959g

    Article  Google Scholar 

  22. Pakiari AH, Mohajeri A (2003) J Mol Struct Theochem 620:31–36. doi:10.1016/S0166-1280(02)00580-8

    Article  Google Scholar 

  23. Pakiari AH, Mohajeri A (2004) J Mol Struct Theochem 685:155–161. doi:10.1016/j.theochem.2004.06.053

    Article  Google Scholar 

  24. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  25. Bader RFW, MacDougall PJ, Lau CD (1984) J Am Chem Soc 106:1594–1605. doi:10.1021/ja00318a009

    Article  CAS  Google Scholar 

  26. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:9457–9463. doi:10.1021/jp971893t

    Article  Google Scholar 

  27. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos, MN (2007) J Theor Comp Chem 6:647–660

    Google Scholar 

  28. Rozenberg M, Loewenschuss A, Marcus Y (2000) ChemPhysChem 2:2699–2702

    Google Scholar 

  29. Hobza P, Havlas Z (2000) Chem Rev 1000:4253–4264. doi:10.1021/cr990050q

    Article  Google Scholar 

  30. Yu W, Lin Z, Huang Z (2006) ChemPhysChem 7:828–830. doi:10.1002/cphc.200500721

    Article  Google Scholar 

  31. Frisch MJ et al (1998) Gaussian 98W (Revision A.1). Gaussian, Inc., Pittsburgh, PA

  32. AIM (2000) 1.0 designed by Biegler-König F. University of Applied Sciences, Bielefeld, Germany

  33. van Meerssche M, Feneau-Dupont J (1976) Introduction à la Cristallographie et à la Chimie Structurale. OYEZ, Leuven

    Google Scholar 

  34. Caballero A, Jalón FA, Manzano BR (1998) Chem Commun 1879–1880

  35. Boys SF, Bernardi F (1970) Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  36. Wu J, Zhang J, Wang Z, Cao W (2007) Chem Phys 338:69–74. doi:10.1016/j.chemphys.2007.07.043

    Article  CAS  Google Scholar 

  37. Wang W, Zheng W, Pu X, Wong N-B, Tian A (2002) J Mol Struct Theochem 618:235–244. doi:10.1016/S0166-1280(02)00543-2

    Article  Google Scholar 

  38. Patwari GN, Takayuki E, Naohiko MM (2000) J Chem Phys 113:9885–9888. doi:10.1063/1.1330234

    Article  Google Scholar 

  39. Wang X, Andrews L, Gagliardi L (2008) J Phys Chem A 112:1754–1761. doi:10.1021/jp710326k

    Article  CAS  Google Scholar 

  40. Oliveira BG, Araújo RCMU, Ramos MN (2008) Struct Chem 19:185–189

    Article  Google Scholar 

  41. Oliveira BG, Araújo RCMU (2007) Quim Nova 30:791–796

    CAS  Google Scholar 

  42. Araújo RCMU, Ramos MN (1996) J Mol Struct Theochem 366:233–240. doi:10.1016/0166-1280(96)04536-8

    Article  Google Scholar 

  43. Araújo RCMU, Ramos MN (1998) J Braz Chem Soc 9:499–505

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge partial financial support from the Brazilian Funding agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz G. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, B.G., Araújo, R.C.M.U. & Ramos, M.N. Multiple proton donors on BeH2···2HCl trimolecular dihydrogen-bonded complex: some theoretical insights. Struct Chem 19, 665–670 (2008). https://doi.org/10.1007/s11224-008-9344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9344-5

Keywords

Navigation