Skip to main content
Log in

Quantitative relationships between bond lengths, stretching vibrational frequencies, bond force constants, and bond orders in the hydrogen-bonded complexes involving hydrogen halides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

To uncover the correlation between the bond length change and the corresponding stretching frequency shift of the proton donor D–H upon hydrogen bond formation, a series of hydrogen-bonded complexes involving HF and HCl which exhibit the characteristics of red-shifted hydrogen bond were investigated at the MP2/aug-cc-pVTZ, M062X/aug-cc-pVTZ, and B3LYP/aug-cc-pVTZ(GD3) levels of theory with CP optimizations. A statistical analysis of these complexes leads to the quantitative illustrations of the relations between bond length and stretching vibrational frequency, between bond length and bond force constant, between stretching vibrational frequency and bond force constant, between bond length and bond order for hydrohalides in a mathematical way, which would provide valuable insights into the explanation of the geometrical and spectroscopic behaviors during hydrogen bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Desiraju GR, Steiner T (1999) Oxford, Oxford University Press

  2. Jeffrey GA (1997) New York, Oxford University Press

  3. Kryachko ES (2006) Dordrecht, Springer

  4. Scheiner S (1997) New York, Oxford University Press

  5. Hobza P, Havlas Z (2000). Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  6. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003). J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  7. Gu Y, Kar T, Scheiner S (1999). J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  8. Hobza P (2001). Phys Chem Chem Phys 3:2555–2556

    Article  CAS  Google Scholar 

  9. Hobza P (2002). Int J Quantum Chem 90:1071–1074

    Article  CAS  Google Scholar 

  10. Hobza P, Havlas Z (1999). Chem Phys Lett 303:447–452

    Article  CAS  Google Scholar 

  11. Hobza P, Havlas Z (2002). Theor Chem Accounts 108:325

    Article  CAS  Google Scholar 

  12. Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth H-D, et al. (1999). Chem Phys Lett 299:180–186

    Article  CAS  Google Scholar 

  13. Hobza P, Spirko V, Selzel HL, Schlag EW (1998). J Phys Chem A 102:2501–2504

    Article  CAS  Google Scholar 

  14. Li AY (2007). J Chem Phys 126:154102

    Article  Google Scholar 

  15. Liu Y (2008). Int J Quantum Chem 108:1123–1129

    Article  CAS  Google Scholar 

  16. Liu Y, Liu W, Yang Y, Liu J (2006). Int J Quantum Chem 106:2122–2128

    Article  CAS  Google Scholar 

  17. Lu P, Liu G-Q, Li J-C (2005). J Mol Struct (THEOCHEM) 723:95–100

  18. McDowell SAC (2003). Phys Chem Chem Phys 5:808–811

    Article  CAS  Google Scholar 

  19. McDowell SAC (2008). J Comput Chem 29:298–305

    Article  CAS  Google Scholar 

  20. McDowell SAC, Buckingham AD (2005). J Am Chem Soc 127:15515–15520

    Article  CAS  Google Scholar 

  21. Scheiner S (2011). Phys Chem Chem Phys 13:13860–13872

    Article  CAS  Google Scholar 

  22. Spirko V, Hobza P (2006). ChemPhysChem 7:640–643

    Article  CAS  Google Scholar 

  23. Wang W, Hobza P (2008). Collect Czechoslov Chem Commun 73:862–872

    Article  CAS  Google Scholar 

  24. Yang Y, Zhang W, Gao X (2006). Int J Quantum Chem 106:1199–1207

    Article  CAS  Google Scholar 

  25. Yang Y, Zhang W, Pei S, Shao J, Huang W, Gao X (2005). J Mol Struct (THEOCHEM) 732:33–37

    Article  CAS  Google Scholar 

  26. Zhang Y, Ma N, Wang W-Z (2012). Acta Phys -Chim Sin 28:499–503

    Article  Google Scholar 

  27. Zhou P-P, Qiu W-Y (2009). ChemPhysChem 10:1847–1858

    Article  CAS  Google Scholar 

  28. Zhou P-P, Qiu W-Y (2009). J Phys Chem A 113:10306–10320

    Article  CAS  Google Scholar 

  29. Lu X, Shi H, Chen J, Ji D (2012). Comput Theor Chem 982:34–39

    Article  CAS  Google Scholar 

  30. McDowell SAC (2003). J Mol Struct (THEOCHEM) 625:243–250

    Article  CAS  Google Scholar 

  31. Zhang G, Ji A, Chen D (2008). J Mol Struct (THEOCHEM) 853:89–96

    Article  CAS  Google Scholar 

  32. Karpfen A (2004). J Mol Struct (THEOCHEM) 710:85–95

    Article  CAS  Google Scholar 

  33. Chocholousova J, Spirko V, Hobza P (2004). Phys Chem Chem Phys 6:37–41

    Article  CAS  Google Scholar 

  34. Cubero E, Orozco M, Hobza P, Luque FJ (1999). J Phys Chem A 103:6394–6401

    Article  CAS  Google Scholar 

  35. Karpfen A (2011). Phys Chem Chem Phys 13:14194–14201

    Article  CAS  Google Scholar 

  36. Karpfen A, Kryachko ES (2005). J Phys Chem A 109:8930–8937

    Article  CAS  Google Scholar 

  37. Karpfen A, Kryachko ES (2006). Chem Phys Lett 431:428–433

    Article  CAS  Google Scholar 

  38. Karpfen A, Kryachko ES (2007). J Phys Chem A 111:8177–8187

    Article  CAS  Google Scholar 

  39. Kryachko ES, Karpfen A (2006). Chem Phys 329:313–328

    Article  CAS  Google Scholar 

  40. Li AY (2006). J Phys Chem A 110:10805–10816

    Article  CAS  Google Scholar 

  41. Li X, Liu L, Schlegel HB (2002). J Am Chem Soc 124:9639–9647

    Article  CAS  Google Scholar 

  42. Pluhackova K, Hobza P (2007). ChemPhysChem 8:1352–1356

    Article  CAS  Google Scholar 

  43. Qian W, Krimm S (2002). J Phys Chem A 106:11663–11671

    Article  CAS  Google Scholar 

  44. Qian W, Krimm S (2002). J Phys Chem A 106:6628–6636

    Article  CAS  Google Scholar 

  45. Qian W, Krimm S (2005). J Phys Chem A 109:5608–5618

    Article  CAS  Google Scholar 

  46. Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, et al. (2001). J Phys Chem A 105:5560–5566

    Article  CAS  Google Scholar 

  47. van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001). J Am Chem Soc 123:12290–12293

    Article  Google Scholar 

  48. Zierkiewicz W, Jurecka P, Hobza P (2005). ChemPhysChem 6:609–617

    Article  CAS  Google Scholar 

  49. Zierkiewicz W, Michalska D, Havlas Z, Hobza P (2002). ChemPhysChem 3:511–518

    Article  CAS  Google Scholar 

  50. Zhou PP, Qiu WY, Jin NZ (2012). J Chem Phys 137:084311

    Article  Google Scholar 

  51. Hill FC, Gibbs GV, Boisen MB (1994). Struct Chem 5:349–355

    Article  CAS  Google Scholar 

  52. Clark CHD (1935). Philos Mag 19:477

    Article  Google Scholar 

  53. Gibbs GV, D'Arco P, Boisen MB (1987). J Phys Chem 91:5347–5354

    Article  CAS  Google Scholar 

  54. Silverstein RM, Webster FX, Kiemle D, Bryce DL (2014) 8th Edition ed. New York, Wiley Interscience

  55. Brown ID, Altermatt D (1985). Sect B 41:244–247

    Google Scholar 

  56. Aakeröy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007). J Am Chem Soc 129:13772–13773

    Article  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HR, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JRJ, Peralta A, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford,

    Google Scholar 

  58. Zhao Y, Schultz NE, Truhlar DG (2006). J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  59. Zhao Y, Truhlar DG (2006). J Chem Phys 125:194101

    Article  Google Scholar 

  60. Zhao Y, Truhlar DG (2007). J Chem Theory Comput 3:289–300

    Article  CAS  Google Scholar 

  61. Zhao Y, Truhlar DG (2008). Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  62. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  63. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  64. Zhou PP, Qiu WY, Liu S, Jin NZ (2011). Phys Chem Chem Phys 13:7408–7418

    Article  CAS  Google Scholar 

  65. Hohenstein EG, Chill ST, Sherrill CD (2008). J Chem Theory Comput 4:1996–2000

    Article  CAS  Google Scholar 

  66. Mo O, Yanez M, Elguero J (1997). J Chem Phys 107:3592

    Article  CAS  Google Scholar 

  67. Dkhissi A, Adamowicz L, Maes G (2000). J Phys Chem A 104:2112–2119

    Article  CAS  Google Scholar 

  68. Grimme S, Antony J, Ehrlich S, Krieg H (2010). J Chem Phys 132:154104–154119

    Article  Google Scholar 

  69. Brovarets' OO, Hovorun DM (2015). Phys Chem Chem Phys 15:15103–15110

    Article  Google Scholar 

  70. Brovarets' OO, Hovorun DM (2015). J Biomol Struct Dyn 33:2297–2315

    Article  Google Scholar 

  71. Brovarets' OO, Hovorun DM (2015). RSC Adv 5:99594–99605

    Article  Google Scholar 

  72. Boys SF, Bernardi F (1970). Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  73. Rozenberg M, Loewenschuss A, Marcus Y (2000) Phys Chem Chem Phys 2:2699–2702.

  74. Alkorta I, Rozas I, Mó O, Yanez M, Elguero J (2001) J Phys Chem A 105:7481–7485.

  75. Andrews L, Wang X, Mielke Z (2001) J Am Chem Soc 123:1499–1500.

  76. Chaban GM, Gerber RB, Janda KC (2001) J Phys Chem A 105:8323–8332.

  77. Grabowski SJ (2004) J Phys Org Chem 17:18–31.

  78. Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692–5698.

  79. Kisiel Z, Pietrewicz BA, Fowler PW, Legon AC, Steiner E (2000) J Phys Chem A 104:6970–6978.

  80. Re S (2001) J Phys Chem A 105:9725–9735.

  81. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, Editor: Russell D. Johnson III. https://cccbdb.nist.gov/

  82. Andrews L, Wang X, Mielke Z (2001). J Am Chem Soc 123:1499–1500

  83. Varshini YP (1958). J Chem Phys 28:1081–1088

  84. Linnett JW (1945). Trans Faraday Soc 41:223–232

  85. Politzer P, Habibollahzadeh D (1993). J Chem Phys 98:7659–7660

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (Grant No. 21403097) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan-Pan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Wu, RZ., Yan, CX. et al. Quantitative relationships between bond lengths, stretching vibrational frequencies, bond force constants, and bond orders in the hydrogen-bonded complexes involving hydrogen halides. Struct Chem 29, 513–521 (2018). https://doi.org/10.1007/s11224-017-1048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1048-2

Keywords

Navigation