Skip to main content
Log in

The (H···H) charge transfer and the evaluation of the harmonic molecular properties of dihydrogen-bonded complexes formed by BeH2···HX with X = F, Cl, CN, and CCH

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a theoretical investigation about structural parameters, electronic properties, and vibrational modes of dihydrogen-bonded (DHB) complexes formed by BeH2···HX with X = F, Cl, CN, and CCH. From B3LYP/6–311++G(3d,3p) calculations, it was verified that some important molecular changes in the free monomers upon the formation of the complexes, in which we can mention the elongation in both BeH2 and HX molecules, description of the bathochromic effect assigned at the monoprotic acids, as well as tendency in the dihydrogen bond strength. Thus, a suitable explanation about these phenomena was performed through the calculations of the Bader’s atoms in molecules (AIM) theory, which described the charge transfer between the HOMO orbital of the beryllium hydride and the LUMO orbital of the HX species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nair R, Nyamweya N, Gonen S, Martinez-Miranda LJ, Hoag SW (2001) Int J Pharm 225:83–96

    Article  CAS  Google Scholar 

  2. Watanabe K, Oguni M, Tadokoro M, Oohata Y, Nakamura R (2006) J Phys Condens Matter 18:8427–8436

    Article  CAS  Google Scholar 

  3. Martin TW, Derewenda ZS (1999) Nat Struct Biol 6:403–406

    Article  CAS  Google Scholar 

  4. Oliveira BG, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta A 61:491–494

    Article  CAS  Google Scholar 

  5. Oliveira BG, Araújo RCMU, Carvalho AB, Lima EF, Silva WLV, Ramos MN, Tavares AM (2006) J Mol Struct (THEOCHEM) 775:39–45

    Article  CAS  Google Scholar 

  6. Sodupe M, Rios R, Branchadell V, Nicholas T, Oliva A, Dannenberg J.J. (1997) J Am Chem Soc 119:4232–4238

    Article  CAS  Google Scholar 

  7. Pimentel GC, McClellan AC (1960) The hydrogen bonding. Freeman, San Francisco

    Google Scholar 

  8. Hobza P, Havlas Z (2000) Chem Rev 1000:4253–4264

    Article  CAS  Google Scholar 

  9. Richardson T, de Gala S, Crabtree RH, Siegbahn PEM (1995) J Am Chem Soc 117:12875–12876

    Article  CAS  Google Scholar 

  10. Orlova G, Scheiner S (1998) J Phys Chem A 102:4813–4818

    Article  CAS  Google Scholar 

  11. Wessel J, Lee Jr. JC, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) Angew Chem Int Ed Engl 34:2507–2509

    Article  CAS  Google Scholar 

  12. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TF (1996) Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  13. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422:334–339

    Article  CAS  Google Scholar 

  14. Liu Q, Hoffmann R (1995) J Am Chem Soc 117:10108–10112

    Article  CAS  Google Scholar 

  15. Grabowski SJ (2000) J Phys Chem A 104:5551–5557

    Article  CAS  Google Scholar 

  16. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  17. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  18. Wiberg KB, Rablen PR (1993) J Comp Chem 14:1504–1518

    Article  CAS  Google Scholar 

  19. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100

    Article  CAS  Google Scholar 

  20. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  21. Woon DE, Dunning Jr. TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  22. Aime S, Diana E, Gobetto R, Milanesio M, Valls E, Viterbo D (2002) Organometallics 21:50–57

    Article  CAS  Google Scholar 

  23. Patwari GN, Mikami N, Ebata T (2000) J Chem Phys 113:9885–9888

    Article  Google Scholar 

  24. Buenker PR, Jensen P (1998) Molecular symmetry and spectroscopic. NRC Research Press, Othawa

    Google Scholar 

  25. Li J, Zhao F, Jing F (2002) J Chem Phys 116:25–32

    Article  CAS  Google Scholar 

  26. Frisch MJ et al (1998) Gaussian 98W (Revision A.1). Gaussian, Inc., Pittsburgh

    Google Scholar 

  27. Cioslowski J, Nanayakkara A, Challacombe M (1993) Chem Phys Lett 203:137–142

    Article  CAS  Google Scholar 

  28. Biegler-König FW, Bader RFW, Tang T-H (1982) J Comp Chem 3:317–328

    Article  Google Scholar 

  29. van Duijneveldt FB, Murrell JN (1967) J Chem Phys 46:1759–1767

    Article  Google Scholar 

  30. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. McQuarrie DA (1973) Statistical thermodynamics. Harper and Row, New York

    Google Scholar 

  32. Hugas D, Simon S, Duran M (2005) Struct Chem 16:257–263

    Article  CAS  Google Scholar 

  33. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  34. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  35. Park YC, Lee JS (2007) Bull Korean Chem Soc 28:386–390

    Article  CAS  Google Scholar 

  36. Stryer L (1995) Biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  37. Carbó R, Klobukowski M (1990) Self consistent field: theory and applications. Elsevier, Amsterdam

    Google Scholar 

  38. Umeyama H, Morokuma K (1977) J Am Chem Soc 99:1316–1332

    Article  CAS  Google Scholar 

  39. King BF, Weinhold F (1995) J Chem Phys 103:333–347

    Article  CAS  Google Scholar 

  40. Araújo RCMU, da Silva JBP, Ramos MN (1995) Spectrochim Acta A 51:821–830

    Article  Google Scholar 

  41. Solimannejad M, Alkorta I (2006) Chem Phys 324:459–464

    Article  CAS  Google Scholar 

  42. Araújo RCMU, Ramos MN (1996) J Mol Struct (THEOCHEM) 366:233–240

    Article  Google Scholar 

  43. King WT, Mast GB (1976) J Phys Chem 80:2521–2525

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge partial financial support to the Brazilian Funding CAPES agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz G. Oliveira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, B.G., Araújo, R.C.M.U. & Ramos, M.N. The (H···H) charge transfer and the evaluation of the harmonic molecular properties of dihydrogen-bonded complexes formed by BeH2···HX with X = F, Cl, CN, and CCH. Struct Chem 19, 185–189 (2008). https://doi.org/10.1007/s11224-007-9269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9269-4

Keywords

Navigation