Skip to main content
Log in

A theoretical study of the interactions between N,N-dimethylformamide and xylenes

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The ab initio and density functional (DFT) methods were performed on binary systems of N,N-dimethylformamide (DMF) with xylenes (o-, or m-, or p-xylene), and seven stable configurations were obtained with no imaginary frequencies. To obtain the interaction energies of these complexes, single-point energy calculations with basis set superposition error (BSSE) correction were carried out at B3LYP/6-31G* and MP2/6-31G* levels. The structures, Chelpg (charges from electrostatic potentials using a grid-based method) charge distribution and bond characteristics of the mentioned complexes were calculated. The results indicated the presence of double C–H···O hydrogen bonds between DMF and xylenes in these complexes and the interaction energies of hydrogen bonding between DMF and xylene systems decreased in the following sequence: DMF–o-xylene: a1 > DMF–m-xylene: b1 > DMF–p-xylene: c1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dunbar RC (2000) J Phys Chem A 104:8067–8074

    Article  CAS  Google Scholar 

  2. Takhashi O, Kohno Y, Saito K (2003) Chem Phys Lett 378:509

    Article  Google Scholar 

  3. Bazzicalupi C, Dapporto P (2004) Struct Chem 15:259–268

    Article  CAS  Google Scholar 

  4. Liu T, Gu JD, Tan XJ, Zhu WL, Luo XM, Jiang HL, Ji RY, Chen KX, Silman I, Sussman J (2001) J Phys Chem A 105:5431–5437

    Article  CAS  Google Scholar 

  5. Joao M, Marques C (1997) Int J Quantum Chem 65:709–717

    Article  Google Scholar 

  6. Radwan GM, Al-Muhtaseb SA, Fahim MA (1997) Fluid Phase Equilib 129:175–186

    Article  CAS  Google Scholar 

  7. Blanco B, Sanz MT, Beltrán S, Cabezas JL, Coca J (2000) Fluid Phase Equilib 175:117–124

    Article  CAS  Google Scholar 

  8. Krishnan CV, Friedman HL (1971) J Phys Chem 75:3606–3612

    Article  CAS  Google Scholar 

  9. Nikam PS, Kharat SJ (2005) J Chem Eng Data 50:455–459

    Article  CAS  Google Scholar 

  10. Tsierkezos NG, Filippou AC (2006) J Chem Thermodyn 38:952–961

    Article  CAS  Google Scholar 

  11. Nikam PS, Kharat SJ (2003) J Chem Eng Data 48:1202–1207

    Article  CAS  Google Scholar 

  12. Xu L, Lin GM, Wang X, Lin RS (2006) J Mol Liq 123:130–133

    Article  CAS  Google Scholar 

  13. González JA, Cobos JC, Fuente IG (2004) J Mol Liq 115:93–103

    Article  Google Scholar 

  14. Wang HJ, Zhu C, Chen MZ, Li HL (1995) J Chem Thermodyn 27:991–996

    Article  CAS  Google Scholar 

  15. Ge QY, Wang HJ, Chen JH (2005) Chinese J Struct Chem 24:1416–1424

    CAS  Google Scholar 

  16. Shan YY, Ren XH, Wang HJ, Bo DW (2007) Struct Chem 18:709–716

    Article  CAS  Google Scholar 

  17. Biegler-Konig F, Bader RF (2002) AIM 2000, Version 2. University of Applied Science, Bielefeld, Germany

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03. Gaussian. Int, Pittsburgh, PA

    Google Scholar 

  19. Desiraju GR (1990) J Chem Soc Chem Commun 6:454–455

    Article  Google Scholar 

  20. Steiner T (1994) J Chem Soc Chem Commun 20:2341–2342

    Article  Google Scholar 

  21. Thomas S (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  22. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  23. Szefczyk B, Sokalski WA, Leszczynski J (2002) J Chem Phys 117:6952–6958

    Article  CAS  Google Scholar 

  24. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  25. Bader RFW (1990) Atom in molecules:a quantum theory, international series of monographs in chemistry. Oxford University Press, Oxford

    Google Scholar 

  26. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  27. Yang Y, Zhang WJ, Pei SX, Shao J, Huang W, Gao XM (2005) J Mol Struct:THEOCHEM 732:33–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, XH., Wang, HJ., Shan, YY. et al. A theoretical study of the interactions between N,N-dimethylformamide and xylenes. Struct Chem 19, 233–238 (2008). https://doi.org/10.1007/s11224-007-9277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9277-4

Keywords

Navigation