Skip to main content
Log in

A theoretical study of the interactions between N, N-dimethylformamide and aromatic hydrocarbons

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The B3LYP and MP2 methods with 6-31G* basis set were used to predict the geometries of N, N-dimethylformamide (DMF) dimer and DMF–aromatic hydrocarbons interaction systems. A total of 10 conformers were obtained with no imaginary frequencies, respectively. The interaction energies of these binary mixtures have been obtained. The analyses of chelpg charge distribution and the atoms in molecules theory (AIM) were used to analyze the nature of the interaction. The results show the presence of hydrogen bonds between DMF and aromatic hydrocarbons. The interaction between DMF and benzonitrile is the strongest with the interaction energy of −21.58 kJ mol−1 (BSSE corrected), and the intensity order of interactions is DMF–benzonitrile: d2 > DMF–DMF: a2 > DMF–toluene: c1 > DMF–benzene: b2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu T, Gu JD, Tan XJ, Zhu WL, Luo XM, Jiang HL, Ji RY, Chen KX, Silman I, Sussman J (2001) J Phys Chem A 105:5431–5437

    Article  CAS  Google Scholar 

  2. Takhashi O, Kohno Y, Saito K (2003) Chem Phys Lett 378:509

    Article  Google Scholar 

  3. Karpfen AJ (2005) Mol Struct (Theochem) 757:203–215

    Article  CAS  Google Scholar 

  4. Dunbar RC (2000) J Phys Chem A 104:8067–8074

    Article  CAS  Google Scholar 

  5. Tan JZ, Xiao HM, Gong XD, Li JS (2002) Acta Phys -Chim Sin 18:307–311

    CAS  Google Scholar 

  6. Bazzicalupi C, Dapporto P (2004) Struct Chem 15:259–268

    Article  CAS  Google Scholar 

  7. Shi FQ, Jiang XM, Xu ZC, An JY, Yu JY (2004) Acta Phys -Chim Sin 20:1324–1325

    CAS  Google Scholar 

  8. Yang E, Zhou LX, Zhang YF (2002) Chinese J Struct Chem 21:103–109

    CAS  Google Scholar 

  9. Krishnan CV, Friedman HL (1971) J Phys Chem 75:3606–3612

    Article  CAS  Google Scholar 

  10. Radwan GM, A1-Muhtaseb SA, Fahim MA (1997) Fluid Phase Equilib 129:175–186

    Article  CAS  Google Scholar 

  11. Blanco B, Sanz MT, Beltrán S, Cabezas JL, Coca J (2000) Fluid Phase Equilib 175:117–124

    Article  CAS  Google Scholar 

  12. Nikam PS, Kharat SJ (2005) J Chem Eng Data 50:455–459

    Article  CAS  Google Scholar 

  13. Tsierkezos NG, Filippou AC (2006) J Chem Thermodyn 38:952–961

    Article  CAS  Google Scholar 

  14. Nikam PS, Kharat SJ (2005) J Chem Eng Data 50:455–459

    Article  CAS  Google Scholar 

  15. Xu L, Lin GM, Wang X, Lin RS (2006) J Mol Liq 123:130–133

    Article  CAS  Google Scholar 

  16. González JA, Cobos JC, Fuente IG (2004) J Mol Liq 115:93–103

    Article  Google Scholar 

  17. Wang HJ, Zhu C, Chen MZ, Li HL (1995) J Chem Thermodyn 27:991–996

    Article  CAS  Google Scholar 

  18. Ge QY, Wang HJ, Chen JH (2005) Chinese J Struct Chem 24:1416–1424

    CAS  Google Scholar 

  19. Biegler-Konig F, Bader RF (2002) AIM 2000, Version 2

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03. Gaussian, Inc., Pittsburgh PA

    Google Scholar 

  21. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  Google Scholar 

  22. Szefczyk B, Sokalski WA, Leszczynski J (2002) J Chem Phys 117:6952–6958

    Article  CAS  Google Scholar 

  23. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  24. Bader RFW (1990) Atom in molecules: a quantum theory, international series of monographs in chemistry. Oxford University Press, Oxford

    Google Scholar 

  25. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  26. Yang Y, Zhang WJ, Pei SX, Shao J, Huang W, Gao XM (2005) J Mol Struct: THEOCHEM 732:33–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, YY., Ren, XH., Wang, HJ. et al. A theoretical study of the interactions between N, N-dimethylformamide and aromatic hydrocarbons. Struct Chem 18, 709–716 (2007). https://doi.org/10.1007/s11224-007-9209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9209-3

Keywords

Navigation