Skip to main content
Log in

Theoretical study of metal ion impact on geometric and electronic properties of terbutaline compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Geometric configuration, UV–Vis absorption spectra, and reactivity of the eight common metal ions (M) with the precursor (L) of terbutaline were calculated by density functional theory (B3LYP) at the level of 6−311+G(d,p) (M = Mg, Ca, Mn, Fe, Ni, Co, Cu, Zn). The binding energy of the complex and the analysis of the natural bond orbital show that the L can bind to the M(II) ion to form a stable complex ML. The results of time-dependent density functional analysis (TD DFT) show that the UV–Vis absorption spectra of the other seven ML molecules have a larger red shift than L, except that ZnL is almost invariant. The density functional activity index (DFRT) and the energy decomposition analysis (EDA) shows that the electrostatic effect is the main contribution of the complex ML, and the stereo-effect or exchange-related energy also has certain contribution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van-Boven JF, Hiddink EG, Stuurman-Bieze AG, Schuiling-Veninga CC, Postma MJ, Vegter S (2013) Int J Clin Pharm 6:1075

    Article  CAS  Google Scholar 

  2. Anders B, Sarah-Eggert EP (2013) Eur J Clin Pharmacol 11:1951

    Google Scholar 

  3. Imran HI, Muhammad I, Allan S, Brett DJ (2014) Amrol Lung 192:47

    Article  CAS  Google Scholar 

  4. Ahmed MA, Mohamed EA, Abdelrahim WN (2014) J Pharm Innov 9:38

    Article  Google Scholar 

  5. Wade A, Chang C (2015) Clin Rev Allergy Immunol 48:66

    Article  CAS  PubMed  Google Scholar 

  6. Li ST, Wang JS, Zhao SL (2009) J Chromatogr B 3:155

    Article  CAS  Google Scholar 

  7. Li YM, Ye Z, Zhou J, Liu J, Song G, Zhang K, Ye BX (2012) J Electroanal Chem 687:51

    Article  CAS  Google Scholar 

  8. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos JV (2010) Langmuir 18:14663

    Article  CAS  Google Scholar 

  9. Robin KH, Paul H, Tomas L, Amsaveni M, Ingvar Y, Dmitry S, Yufit VZ (2008) Crystal Growth Des 1:80

    Google Scholar 

  10. Robin KH, Paul H, Vadim Z, Jean-Nicolas D, Elena-Herrmann B, Lyndon E, Elodie S, Robin SS (2010) Magn Reson Chem 48:S103

    Article  CAS  Google Scholar 

  11. Hanlu W, Nathan J, De Y, Hui G, Liangnian J, Zhao CY, Mao ZW (2012) J Organomet Chem 704:17

    Article  CAS  Google Scholar 

  12. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2018) Med Chem Res 1:95

    Article  CAS  Google Scholar 

  13. Ali HRH, Edwards HGM, Kendrick J, Scowen IJ (2008) Spectrochim Acta A 4:715

    Google Scholar 

  14. Siva S, Venkatesh G, Prabhu AAM, Sankaranarayanan RK, Rajendiran N (2012) Phys Chem Liq 4:434

    Article  CAS  Google Scholar 

  15. Zilka M, Dudenko DV, Hughes CE, Williams PA, Sturniolo S, Franks WT, Pickard CJ, Yates JR, Harris KDM, Brown SP (2017) Phys Chem Chem Phys 38:25949

    Article  Google Scholar 

  16. Wang XW, Jiang G, Du JG (2011) Acta Phys Chim Sin 2:309

    Google Scholar 

  17. Wang CJ, Cai YP, Huang XH, Wei T (2011) Acta Phys Chim Sin 2:352

    Google Scholar 

  18. Sun XL, Jin Q, Wang YN, Cai YP, Wang CJ (2014) Acta Phys Chim Sin 6:1071

    Google Scholar 

  19. Jin Q, Sun XL, Wang YN, Wei T, Wang CJ (2014) Acta Phys Chim Sin 7:1247

    Google Scholar 

  20. Zhong AG, Wu JY, Yan H, Jin YX, Dai GL, Jiang HJ, Pan FY, Liu SB (2009) Acta Phys Chim Sin 7:1367

    Google Scholar 

  21. Zhong AG, Huang L, Jiang HJ (2011) Acta Phys Chim Sin 4:837

    Google Scholar 

  22. Zhong AG, Huang L, Li BL, Jiang HJ, Liu SB (2010) Acta Phys Chim Sin 10:2763

    Google Scholar 

  23. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  24. Geerlings P, DeProft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  25. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    Article  CAS  PubMed  Google Scholar 

  26. Liu SB (2009) Acta Phys Chim Sin 25:590

    CAS  Google Scholar 

  27. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  28. Legault CY (2009) CYLview. Université de Sherbrooke, Canada. http://www.cylview.org

  29. Mulliken RS (1934) J Chem Phys 2:782

    Article  CAS  Google Scholar 

  30. Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  31. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  32. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, VanDam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, Dejong WA (2010) Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  33. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  PubMed  Google Scholar 

  34. Lu T, Chen FW (2012) J Comp Chem 33:580

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukud R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi MR, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian Inc, Wallingford

  36. Burger SK, Liu SB, Ayers PW (2011) J Phys Chem A 7:1293

    Article  CAS  Google Scholar 

  37. Liu SB, Govind N, Pedersen LG (2008) J Chem Phys 129:094104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu SB, Hu H, Pedersen LG (2010) J Phys Chem A 114:5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ess DH, Liu SB, DeProft FJ (2010) Phys Chem A 114:12952

    Article  CAS  Google Scholar 

  40. Tsirelson VG, Stash AI, Liu SB (2010) J Chem Phys 133:114110

    Article  CAS  PubMed  Google Scholar 

  41. Huang Y, Zhong AG, Yang QS, Liu SB (2011) J Chem Phys 134:084103

    Article  CAS  PubMed  Google Scholar 

  42. Torrent-Sucarrat M, Liu SB, DeProft F (2009) J Phys Chem A 113:3698

    Article  CAS  PubMed  Google Scholar 

  43. Zhao DB, Rong CY, Jenkins SK, Kirk SR, Yin DL, Liu SB (2013) Acta Phys Chim Sin 01:43

    Google Scholar 

  44. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855

    Article  CAS  Google Scholar 

  45. Zhao DB, Rong CY, Lian SX, Liu SB (2013) J Nat Sci Hunan Normal Univ 2:44

    Google Scholar 

  46. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Phys Chem Chem Phys 7:1918

    Article  CAS  PubMed  Google Scholar 

  47. Ayers PW, Anderson JSM, Bartolotti L (2005) J Int J Quantum Chem 101:520

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  49. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  50. Parr RG, Szentpaly LV, Liu SB (1999) J Am Chem Soc 105:1922

    Article  Google Scholar 

  51. Pearson RG (1963) J Am Chem Soc 85:3533

    Article  CAS  Google Scholar 

  52. Liu SB (2009) Electrophilicity. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional theory view. Taylor & Francis Group, London

    Google Scholar 

  53. Ayers PW, Anderson JSM, Bartolotti LJ (2009) Int J Quantum Chem 5:52

    Google Scholar 

Download references

Acknowledgements

The project was supported by the Natural Science Foundation of Zhejiang Province, China (LY15B030001; LY18B010002) and China National Natural Science Youth Fund (201506138) and Chemical Engineering and Technology of Zhejiang Province First-Class Discipline (Taizhou University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ai Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z.A., Xian, J.Y., Rong, L.R. et al. Theoretical study of metal ion impact on geometric and electronic properties of terbutaline compounds. Monatsh Chem 150, 1355–1364 (2019). https://doi.org/10.1007/s00706-019-02419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02419-1

Keywords

Navigation