Skip to main content

Advertisement

Log in

Preparation, Modeling, and Optimization of Mechanical Properties of Epoxy/HIPS/Silica Hybrid Nanocomposite Using Combination of Central Composite Design and Genetic Algorithm. Part 1. Study of Damping and Tensile Strengths

  • Published:
Strength of Materials Aims and scope

Brittle nature and poor resistance in front of vibrational waves despite of good mechanical strength have limited widespread use of epoxy resins in industry. In current study a new combination of thermoplastic and particulate nanofiller is used as modifier to enhance simultaneously tensile strengths and damping properties in first and second modes of epoxy-based nanocomposite. High impact polystyrene (HIPS) as thermoplastic phase and silica nanoparticles as particulate phases incorporately used to obtain ternary epoxy-based nanocomposite. In current study solution blending as dispersion mechanism is used to prepare homogenous mixture and brings good molecular level of mixing. Tensile and damping properties in first and second modes were the two different mechanical tests investigated in order to achieve higher toughness strengths without attenuating desired mechanical properties. Also central composite design is employed to present mathematical models for predict mechanical behaviors of epoxy/HIPS/silica nanocomposite as function of physical factors. The effective parameters investigated were HIPS, SiO2, and hardener contents. Based on mathematical functions obtained from central composite design model, the genetic algorithm as one of powerful optimization tools is applied to find optimum values of mentioned mechanical properties. From the results it can be found that combination of HIPS and silica nanoparticles significantly increased tensile and damping strengths of epoxy resin up to 69, 42, and 91%, respectively. The morphology of fracture surface is also studied by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “A new method for evaluation of mechanical properties of glass/epoxy composites at low temperatures,” Strength Mater., 44, No. 1, 87–99 (2012).

    Article  CAS  Google Scholar 

  2. M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “Progressive failure analysis of glass/epoxy composites at low temperatures,” Strength Mater., 44, No. 3, 314–324 (2012).

    Article  CAS  Google Scholar 

  3. A. V. Buketov, P. D. Stukhlyak, V. V. Levyts’kyi, et al., “A study of creep of epoxy composites with continuous fibers and modified fine filler in aggressive media,” Strength Mater., 43, No. 3, 338–346 (2011).

    Article  CAS  Google Scholar 

  4. H. Kishi, M. Kuwata, S. Matsuda, et al., “Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites,” Compos. Sci. Technol., 64, 2517–2523 (2004).

    Article  CAS  Google Scholar 

  5. A. J. Kinloch, M. L. Yuen, and S. D. Jenkins, “Thermoplastic-toughened epoxy polymers,” J. Mater. Sci., 29, 3781–3790 (1994).

    Article  CAS  Google Scholar 

  6. R. D. Brooker, A. J. Kinloch, and A. C. Taylor, “The morphology and fracture properties of thermoplastic-toughened epoxy polymers,” J. Adhes., 86, Issue 7, 726–741 (2010).

    Article  CAS  Google Scholar 

  7. E. H. Rowe, A. R. Siebert, and R. S. Drake, “Toughening thermosets with butadiene/acrylonitrile polymers,” Mod. Plast., 47, 110–117 (1970).

    CAS  Google Scholar 

  8. A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. L. Hunston, “Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies,” Polymer, 24, Issue 10, 1341–1354 (1983).

    Article  CAS  Google Scholar 

  9. R. A. Pearson and A. F. Yee, “Toughening mechanisms in elastomer-modified epoxies,” J. Mater. Sci., 21, 2475–2488 (1986).

    Article  CAS  Google Scholar 

  10. N. G. Yun, Y. G. Won, and S. C. Kim, “Toughening of epoxy composite by dispersing polysulfone particle to form morphology spectrum,” Polym. Bull., 52, 365–372 (2004).

    Article  CAS  Google Scholar 

  11. M. Kimoto and K. Mizutani, “Blends of thermoplastic polyimide with epoxy resin: Pt. II. Mechanical studies,” J. Mater. Sci., 32, 2479–2483 (1997).

    Article  CAS  Google Scholar 

  12. A. Mirmohseni and S. Zavareh, “Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers,” Mater. Des., 31, No. 6, 2699–2706 (2010).

    Article  CAS  Google Scholar 

  13. K. Mimura, H. Ito, and H. Fujioka, “Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins,” Polymer, 41, Issue 12, 4451–4459 (2000).

    Article  CAS  Google Scholar 

  14. L. R. F. Rose, “Toughening due to crack-front interaction with a second-phase dispersion,” Mech. Mater., 6, Issue 1, 11–15 (1987).

    Article  Google Scholar 

  15. K. T. Faber and A. G. Evans, “Crack deflection processes – II. Experiment,” Acta Metall., 31, No. 4, 577–584 (1983).

    Article  Google Scholar 

  16. J. Lee and A. F. Yee, “Inorganic particle toughening I: Micro-mechanical deformations in the fracture of glass bead filled epoxies,” Polymer, 42, No. 2, 577–588 (2001).

    Article  CAS  Google Scholar 

  17. J. Lee and A. F. Yee, “Inorganic particle toughening II: Toughening mechanisms of glass bead filled epoxies,” Polymer, 42, No. 2, 589–597 (2001).

    Article  CAS  Google Scholar 

  18. J. Lee and A. F. Yee, “Fracture of glass bead/epoxy composites: on micromechanical deformations,” Polymer, 41, Issue 23, 8363–8373 (2000).

    Article  CAS  Google Scholar 

  19. T. Kawaguchi and R. A. Pearson, “The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies. Pt. 2. A study on fracture toughness,” Polymer, 44, Issue 15, 4239–4247 (2003).

    Article  CAS  Google Scholar 

  20. T. H. Hsieh, A. J. Kinloch, K. Masania, et al., “The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles,” Polymer, 51, Issue 26, 6284–6294 (2010).

    Article  CAS  Google Scholar 

  21. C. Roscher, “Tiny particles, huge effect: Radiation curable silica nanocomposites for scratch and abrasion resistant coatings,” Eur. Coat. J., No. 4, 138–142 (2003).

  22. R. A. Vaia, T. Benson Tolle, G. F. Schmitt, et al., “Nanoscience and nanotechnology: materials revolution for the 21st century,” SAMPE J., 37, 4–31 (2001).

    Google Scholar 

  23. E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context,” Compos. Sci. Technol., 65, 491–516 (2005).

    Article  CAS  Google Scholar 

  24. B. Wetzel, F. Haupert, K. Friedrich, et al., “Impact and wear resistance of polymer nanocomposites at low filler content,” Polymer Eng. Sci., 42, Issue 9, 1919–1927 (2002).

    Article  CAS  Google Scholar 

  25. H. Zou, S. Wu, and J. Shen, “Polymer/silica nanocomposites: preparation, characterization, properties, and applications,” Chem. Rev., 108, 3893–3957 (2008).

    Article  CAS  Google Scholar 

  26. A. Asif, K. Leena, V. Lakshmana Rao, and K. N. Ninan, “Hydroxyl terminated poly(ether ether ketone) with pendant methyl group-toughened epoxy clay ternary nanocomposites: preparation, morphology, and thermomechanical properties,” J. Appl. Polymer Sci., 106, Issue 5, 2936–2946 (2007).

    Article  CAS  Google Scholar 

  27. H. Zhang, L. A. Berglund, “Deformation and fracture of glass bead/CTBN-rubber/epoxy composites,” Polymer Eng. Sci., 33, Issue 2, 100–107 (1993).

    Article  CAS  Google Scholar 

  28. J. Lee and A. F. Yee, “Micro-mechanical deformation mechanisms in the fracture of hybrid-particulate composites based on glass beads, rubber and epoxies,” Polymer Eng. Sci., 40, Issue 12, 2457–2470 (2000).

    Article  CAS  Google Scholar 

  29. F. Ravari, A. Omrani, A. A. Rostami, and M. Ehsani, “Ageing effects on electrical, morphological, and mechanical properties of a low viscosity epoxy nanocomposite,” Polymer Degrad. Stab., 97, No. 6, 929–935 (2012).

    Article  CAS  Google Scholar 

  30. A. Omrani, L. C. Simon, A. A. Rostami, and M. Ghaemy, “Cure kinetics, dynamic mechanical and morphological properties of epoxy resin–Im6NiBr2 system,” Eur. Polymer J., 44, No. 3, 769–779 (2008).

    Article  CAS  Google Scholar 

  31. A. Omrani, L.C. Simon, and A. A. Rostami, “Influences of cellulose nanofiber on the epoxy network formation,” Mater. Sci. Eng. A, 490, 131–137 (2008).

    Article  Google Scholar 

  32. R. Leardi, “Experimental design in chemistry: a tutorial,” Anal. Chim. Acta, 652, 161–172 (2009).

    Article  CAS  Google Scholar 

  33. P. Angelopoulos, H. Evangelaras, and C. Koukouvinos, “Small, balanced, efficient and near rotatable central composite designs,” J. Statist. Plan. Infer., 139, No. 6, 2010–2013 (2009).

    Article  Google Scholar 

  34. J. S. Chung and S. M. Hwang, “Application of a genetic algorithm to the optimal design of the die shape in extrusion,” J. Mater. Process. Technol., 72, No. 1, 69–77 (1997).

    Article  Google Scholar 

  35. R. G. Song and Q. Z. Zhang, “Heat treatment optimization for 7175 aluminum alloy by genetic algorithm,” Mater. Sci. Eng. C, 17, Issues 1-2, 133–137 (2001).

    Article  Google Scholar 

  36. R.-G. Song, Q.-Z. Zhang, M.-K. Tseng, and B.-J. Zhang, “The application of artificial neural networks to the investigation of aging dynamics in 7175 aluminium alloys,” Mater. Sci. Eng. C, 3, Issue 1, 39–41 (1995).

    Article  Google Scholar 

  37. P. van Overschee and B. de Moor, Subspace Identification for Linear Systems. Theory–Implementation– Applications, Kluwer Academic Publishers, Dordrecht (1996).

    Book  Google Scholar 

  38. B. Peeters, System Identification and Damage Detection in Civil Engineering, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium (2000).

  39. A. R. Brincker and P. Andersen, “Understanding stochastic subspace identification,” in: Proc. of International Modal Analysis Conference (IMAC), Denmark (2006), pp. 461–466.

  40. E. Morgan (Ed.), Chemometrics: Experimental Design, Wiley, Chichester (1995).

    Google Scholar 

  41. M. Hadjmohammadi and V. Sharifi, “Simultaneous optimization of the resolution and analysis time of flavonoids in reverse phase liquid chromatography using Derringer’s desirability function,” J. Chromatogr. B, 880, 34–41 (2012).

    Article  CAS  Google Scholar 

  42. A. Mirmohseni and S. Zavareh, “Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology,” J. Polymer Res., 18, 509–517 (2011).

    Article  CAS  Google Scholar 

  43. A. Mirmohseni and S. Zavareh, “Epoxy/acrylonitrile-butadiene-styrene copolymer/clay ternary nanocomposite as impact toughened epoxy,” J. Polymer Res., 17, No. 2, 191–201 (2010).

    Article  CAS  Google Scholar 

  44. Y. Huang and A. J. Kinloch, “Modelling of the toughening mechanisms in rubber-modified epoxy polymers,” J. Mater. Sci., 27, Issue 10, 2763–2769 (1992).

    Article  CAS  Google Scholar 

  45. A. F. Yee and R. A. Pearson, “Toughening mechanisms in elastomer-modified epoxies,” J. Mater. Sci., 21, 2462–2474 (1986).

    Article  CAS  Google Scholar 

  46. J. López, C. Ramirez, M. J. Abad, et al., “Blends of acrylonitrile–butadiene–styrene with an epoxy/ cycloaliphatic amine resin: phase-separation behavior and morphologies,” J. Appl. Polymer Sci., 85, Issue 6, 1277–1286 (2002).

    Article  Google Scholar 

  47. Y. Müller, L. Häuβler, and J. Pionteck, “ABS-modified epoxy resins – curing kinetics, polymerization induced phase separation, and resulting morphologies,” Macromolec. Symp., 254, Issue 1, 267–273 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rostamiyan.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 146 – 165, September – October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostamiyan, Y., Fereidoon, A.B. Preparation, Modeling, and Optimization of Mechanical Properties of Epoxy/HIPS/Silica Hybrid Nanocomposite Using Combination of Central Composite Design and Genetic Algorithm. Part 1. Study of Damping and Tensile Strengths. Strength Mater 45, 619–634 (2013). https://doi.org/10.1007/s11223-013-9499-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-013-9499-1

Keywords

Navigation