Skip to main content
Log in

Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper reports the development of a high-impact epoxy nanocomposite toughened by the combination of poly(acrylonitrile-co-butadiene-co-styrene) (ABS) as thermoplastic, clay as layered nanofiller, and nano-TiO2 as particulate nanofiller. Response surface methodology (RSM) was applied for optimization and modeling of the impact strength of epoxy/ABS/clay/TiO2 quaternary nanocomposite. A second-order mathematical model between the response (impact strength) and variables (ABS, clay and nano-TiO2 contents) was derived. Analysis of variance (ANOVA) showed a high coefficient of determination value (R 2 = 98%). Under optimum conditions, maximum impact strength of 29.2 KJ/m2 with 197% increase compared to neat epoxy was experimentally obtained. Also correlation between morphology and impact strength of the nanocomposite was investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). A dispersion of exfoliated clay platelets, TiO2 nanoparticles with low agglomeration and ABS nanoparticles was obtained as morphology of the nanocomposite. A new and more effective method for impact toughening of epoxy was introduced. This study clearly showed that the addition of the combination of layered and particulate nanofillers along with ABS as thermoplastic has a considerable enhancement effect on impact strength of epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muskopf JW, Mccollister SB (2002) In: Bohnet M, Brinker J, Cornils B et al (eds) Ullmann’s encyclopedia of industrial chemistry, 6th edn. New York, Wiley

    Google Scholar 

  2. Lee H, Neville K (1967) Handbook of epoxy resins. McGraw Hill, New York

    Google Scholar 

  3. Yun NG, Won YG, Kim SC (2004) Polym Bull 52:365

    Article  CAS  Google Scholar 

  4. Kimoto M, Mizutani K (1997) J Mater Sci 32:2479

    Article  CAS  Google Scholar 

  5. Mimura K, Ito H, Fujioka H (2000) Polymer 41:4451

    Article  CAS  Google Scholar 

  6. Bonnaud L, Pascault JP, Sautereau H (2004) Eur Polym J 40:2637

    Article  CAS  Google Scholar 

  7. Chen C, Chen Y, Shen K et al (2003) J Polym Res 10:39

    Article  CAS  Google Scholar 

  8. Lopez J, Ramirez C, Abad MJ (2002) J Appl Polym Sci 85:1277

    Article  CAS  Google Scholar 

  9. Müller Y, Häuβler L, Pionteck J (2007) Macromol Symp 254:267

    Google Scholar 

  10. Abad MJ, Barral L, Cano J et al (2001) Eur Polym J 37:1613

    Article  CAS  Google Scholar 

  11. Ramakrishna HV, Priya SP, Rai SK (2007) J Appl Polym Sci 104:171

    Article  CAS  Google Scholar 

  12. Torres A, Lopez-de-Ullibarri I, Abad MJ et al (2004) J Appl Polym Sci 92:461

    Article  CAS  Google Scholar 

  13. Wang L, Wang K, Chen L et al (2006) Compos A 37:1890

    Article  Google Scholar 

  14. Kinloch AJ, Taylor AC (2006) J Mater Sci 41:3271

    Article  CAS  Google Scholar 

  15. Zunjarrao SC, Sriraman R, Singh RP (2006) J Mater Sci 41:2219

    Article  CAS  Google Scholar 

  16. Miyagawa H, Foo KH, Daniel IM et al (2005) J Appl Polym Sci 96:281

    Article  CAS  Google Scholar 

  17. Mohan TP, Kumar MR, Velmurugan R (2006) J Mater Sci 41:2929

    Article  CAS  Google Scholar 

  18. Zheng Y, Zheng Y, Nig R (2003) Mater Lett 27:2940

    Google Scholar 

  19. Ma J, Mo MS, Du X-Sh et al (2008) Polymer 49:3510

    Article  CAS  Google Scholar 

  20. Shi G, Zhang MQ, Rong MZh (2004) Wear 256:1072

    Article  CAS  Google Scholar 

  21. Wetzel B, Rosso P, Haupert F et al (2006) Eng Fract Mech 73:2375

    Article  Google Scholar 

  22. Li L, Zou H, Shao L et al (2005) J Mater Sci 40:1297

    Article  CAS  Google Scholar 

  23. Asif A, Leena K, Rao VL (2007) J Appl Polym Sci 106:2936

    Article  CAS  Google Scholar 

  24. Bakar M, Wojtania I, Legocka I et al (2007) Adv Polym Technol 26:223

    Article  CAS  Google Scholar 

  25. Mirmohseni A, Zavareh S (2010) J Polym Res 17:191

    Article  CAS  Google Scholar 

  26. Khuri AI (2005) Response surface methodology and related topics. World Scientific Publishing Co. Pte. Ltd., Hockensack

    Google Scholar 

  27. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, USA

    Google Scholar 

  28. Jia Q, Zheng M, Cheng J et al (2006) Polym Int 55:1259

    Article  CAS  Google Scholar 

  29. Gilman JW, Jackson CL, Morgan AB et al (2000) Chem Mater 12:1866

    Article  CAS  Google Scholar 

  30. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Google Scholar 

Download references

Acknowledgement

The authors are most grateful for the continuing financial support of this research project by University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Mirmohseni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirmohseni, A., Zavareh, S. Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology. J Polym Res 18, 509–517 (2011). https://doi.org/10.1007/s10965-010-9443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9443-z

Keywords

Navigation