Skip to main content
Log in

Design and Analysis of a Robust Gyroscope via Grating SPP on Cantilever

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In this paper, using a MOEMS cantilever, an opto-plasmonic gyroscope is introduced. A metallic grating, as the substrate for surface plasmon polaritons, is employed on the cantilever. The mechanical structure converts input angular velocity into a change of the light incidence angle, then reflected optical power is measured by a photo-detector. Subsequently, the output current of the sensor is modulated according to the input angular velocity. This robust system has a simple and effective structure, and the simulation results propose characteristics including optical sensitivity of \(0.13\;{\text{nW}}/(^\circ /{\text{s}})\), total sensitivity of \(0.05\;{\text{nA}}/(^\circ /{\text{s}})\), ultra-wide measurement range of \(\pm 567228217.18 \;^\circ /{\text{s}}\), and resolution of \(0.77 \;^\circ /{\text{s}}\). Moreover, the operating wavelength is λ = 630 nm with a minimum required laser power of 73 pW, and the designed structure has dimensions of \(15 \times 30 \times 6\;{\mu m}^{3}\). Furthermore, a comprehensive study on the effects of various mechanical and optical parameters on the performance of the gyroscope is presented, and a comparative study is done.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Passaro, V. M., Cuccovillo, A., Vaiani, L., De Carlo, M., & Campanella, C. E. (2017). Gyroscope technology and applications: A review in the industrial perspective. Sensors, 17(10), 2284.

    Article  Google Scholar 

  2. Shah-Mohammadi-Azar, A., Shabani, R., & Rezazadeh, G. (2015). A novel micro-cantilever based angular speed sensor controlled piezoelectrically and tuned by electrostatic actuators. Sensing and Imaging, 16, 1–14.

    Article  Google Scholar 

  3. Barrett, B., Bertoldi, A., & Bouyer, P. (2016). Inertial quantum sensors using light and matter. Physica Scripta, 91(5), 053006.

    Article  Google Scholar 

  4. Liu, K., et al. (2019). The development of micro-gyroscope technology. Journal of Micromechanics and Microengineering, 19(11), 113001.

    Article  Google Scholar 

  5. Mohammadian, S., Babazadeh, F., & Abedi, K. (2021). Study of a MOEMS XOR gate based on optical ring resonator. Physica Scripta, 96(12), 125532.

    Article  Google Scholar 

  6. Yazdani, A. M., & Şişman, A. (2020). A novel numerical model to simulate acoustofluidic particle manipulation. Physica Scripta, 95(9), 095002.

    Article  Google Scholar 

  7. Xia, D., Huang, L., & Zhao, L. (2019). A new design of an MOEMS gyroscope based on a WGM microdisk resonator. Sensors, 19(12), 2798.

    Article  Google Scholar 

  8. Motamedi, M. E. (2005). MOEMS: Micro-opto-electro-mechanical systems. SPIE Press.

    Book  Google Scholar 

  9. Marenco , N., et al. (2009). Investigation of key technologies for system-in-package integration of inertial MEMS. In 2009 Symposium on design, test, integration & packaging of MEMS/MOEMS (pp. 35–40). IEEE.

  10. Ou, J., Yu, B., Gao, J.-R., & Pan, D. Z. (2015). Directed self-assembly cut mask assignment for unidirectional design. Journal of Micro/Nanolithography, MEMS, and MOEMS, 14(3), 031211.

    Article  Google Scholar 

  11. Najafi, K. (2003). Micropackaging technologies for integrated microsystems: Applications to MEMS and MOEMS. Micromachining and Microfabrication Process Technology VIII, SPIE, 4979, 1–19.

    Article  Google Scholar 

  12. Taghavi, M., Latifi, H., Parsanasab, G. M., Abedi, A., Nikbakht, H., & Poorghadiri, M. H. (2021). A dual-axis MOEMS accelerometer. IEEE Sensors Journal, 21(12), 13156–13164.

    Article  Google Scholar 

  13. Verellen, N., et al. (2011). Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano letters, 11(2), 391–397.

    Article  Google Scholar 

  14. Mollah, M. A., Islam, S. R., Yousufali, M., Abdulrazak, L. F., Hossain, M. B., & Amiri, I. (2020). Plasmonic temperature sensor using D-shaped photonic crystal fiber. Results in Physics, 16, 102966.

    Article  Google Scholar 

  15. Mahmoudpour, M., Dolatabadi, J. E. N., Torbati, M., Tazehkand, A. P., Homayouni-Rad, A., & de la Guardia, M. (2019). Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics, 143, 111603.

    Article  Google Scholar 

  16. Zhang, T., et al. (2014). Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator. Scientific reports, 4(1), 1–6.

    Google Scholar 

  17. Li, W., Zhang, T., Zhang, X.-Y., Zhu, S.-Q., & Yang, D.-X. (2013). Theoretical analysis of long range surface plasmon polaritons waveguide gyroscope. Nanoscience and Nanotechnology Letters, 5(2), 126–129.

    Article  Google Scholar 

  18. Wang, Y.-Y., & Zhang, T. (2014). Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope. Scientific Reports, 4(1), 1–6.

    MathSciNet  Google Scholar 

  19. Liu, J., Yu, L., & Wu, J. (2019). Optical gyroscope based on multi-gap surface Plasmon optical waveguide. Journal of Applied Science and Engineering, 22(2), 299–306.

    Google Scholar 

  20. Qiu, Z.-C., Wu, H.-X., & Zhang, D. (2009). Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope. Thin-Walled Structures, 47(8–9), 836–846.

    Article  Google Scholar 

  21. Dingbang, X., Xuezhong, W., Zhanqiang, H., Zhihua, C., Peitao, D., & Shengyi, L. (2009). High-performance micromachined gyroscope with a slanted suspension cantilever. Journal of Semiconductors, 30(4), 044012.

    Article  Google Scholar 

  22. Li, M., et al. (2019). Structural design and simulation of a micro-gyroscope based on nano-grating detection. Microsystem Technologies, 25(5), 1627–1637.

    Article  Google Scholar 

  23. Yu, Y., Dai, L., Chen, M.-S., Kong, L.-B., Wang, C.-Q., & Xue, Z.-P. (2020). Calibration, compensation and accuracy analysis of circular grating used in single gimbal control moment gyroscope. Sensors, 20(5), 1458.

    Article  Google Scholar 

  24. Sheikhaleh, A., Jafari, K., & Abedi, K. (2018). Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system. IEEE Sensors Journal, 19(1), 144–150.

    Article  Google Scholar 

  25. Gholinejad, J., & Abedi, K. (2023). Design and analysis of a MOEMS gyroscope based on a ring-shaped hybrid structure. Plasmonics, 18, 1159–1172.

    Article  Google Scholar 

  26. Gholinejad, J., & Abedi, K. (2023). Designing of a MOEMS Gyroscope Based on an Asymmetric-Grating Hybrid-Plasmonic ROC. Arabian Journal for Science and Engineering, 48, 15003–15014.

    Article  Google Scholar 

  27. Mansouri, M., Mir, A., Farmani, A., & Izadi, M. (2021). Numerical modeling of an integrable and tunable plasmonic pressure sensor with nanostructure grating. Plasmonics, 16(1), 27–36.

    Article  Google Scholar 

  28. Mere, V., Dash, A., Kallega, R., Naik, A., Pratap, R., & Selvaraja, S. K. (2019). On-chip silicon-photonics based integrated vibrometer. MOEMS and Miniaturized Systems XVIII, SPIE, 10931, 187–192.

    Google Scholar 

  29. Sekatskii, S. K., Mensi, M., Mikhaylov, A. G., & Dietler, G. (2013). The Use of Light Diffracted from Grating Etched onto the Backside Surface of an Atomic Force Microscope Cantilever Increases the Force Sensitivity. Journal of Surface Engineered Materials and Advanced Technology, 3(4), 29.

    Article  Google Scholar 

  30. Yang, C.-W., et al. (2013). Torsional resonance mode atomic force microscopy in liquid with Lorentz force actuation. Nanotechnology, 24(30), 305702.

    Article  Google Scholar 

  31. PDB230A Manual. https://www.thorlabs.com/thorproduct.cfm?partnumber=PDB230A

  32. Vuye, G., Fisson, S., Van, V. N., Wang, Y., Rivory, J., & Abeles, F. (1993). Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry. Thin Solid Films, 233(1–2), 166–170.

    Article  Google Scholar 

  33. Gholinejad, J., Jafari, K., & Abedi, K. (2019). Optical XOR interconnect gate based on symmetric and asymmetric plasmonic modes in IMI structure using modified Kretschmann configuration. In 2019 2nd West Asian colloquium on optical wireless communications (WACOWC) (pp. 131–135). IEEE.

  34. Yakubovsky, D. I., Arsenin, A. V., Stebunov, Y. V., Fedyanin, D. Y., & Volkov, V. S. (2017). Optical constants and structural properties of thin gold films. Optics Express, 25(21), 25574–25587.

    Article  Google Scholar 

  35. Mohammadi, M., Olyaee, S., & Seifouri, M. (2019). Passive integrated optical gyroscope based on photonic crystal ring resonator for angular velocity sensing. SILICON, 11(6), 2531–2538.

    Article  Google Scholar 

  36. Savchenkov, A. A., Liang, W., Ilchenko, V., Matsko, A., & Maleki, L. (2018). Crystalline waveguides for optical gyroscopes. IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Shahid Beheshti University (SBU), Tehran, Iran for its supports.

Funding

The publishing of this study was supported by Shahid Beheshti University (SBU), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

The subject of MOEMS opto-plasmonic gyroscope is suggested to Jalal Gholinejad by Kmbiz Abedi, as K. Abedi is the supervisor of J. Gholinejad (PhD Student). The novel structure and SPP-idea are provided by J. Gholinejad, and the simulations are done by him. Subsequently, some modifications are implemented by guidance of K. Abedi. Next, the initial text is prepared by J. Gholinejad, and the passage was edited by K. Abedi. All authors have equal role in this research.

Corresponding author

Correspondence to Kambiz Abedi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholinejad, J., Abedi, K. Design and Analysis of a Robust Gyroscope via Grating SPP on Cantilever. Sens Imaging 25, 8 (2024). https://doi.org/10.1007/s11220-024-00460-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-024-00460-x

Keywords

Navigation