Skip to main content
Log in

Designing of a MOEMS Gyroscope Based on an Asymmetric-Grating Hybrid-Plasmonic ROC

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article introduces a double-sided vibrating MOEMS gyroscope which uses a readout circuit with a novel technique based on an asymmetric Au grating. The proposed asymmetric grating has an innovative structure, as well as the hybrid surface plasmon polariton (SPP) mechanism is suggested for the first time in this device. Modeling and simulations are performed using numerical studies aimed at achieving low dimensions, high sensitivity, and broad measurement range. The provided gyroscope has a measurement range of  ± 11460 °/s, a mechanical sensitivity of 0.2671 nm/°/s , an optical sensitivity of 1.9066 μW/°/s, a total sensitivity of 0.7626 μA/°/s, and a resolution of 52.449 μ°/s. Moreover, the characteristics of a proof mass of 0.2543 μg, an operational wavelength of \(\lambda = 630 \;{\text{nm}}\), a bandwidth of \(1.496\;{\text{ kHz}}\), and a measurement time of \(1 \;{\text{ms}}\) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Volkov, P.; Lukyanov, A.; Goryunov, A.; Semikov, D.; Vopilkin, E.; Kraev, S.; Okhapkin, A.; Tertyshnik, A.; Arkhipova, E.: Wideband MOEMS for the calibration of optical readout systems. Sensors 21, 7343 (2021). https://doi.org/10.3390/s21217343

    Article  Google Scholar 

  2. Nagui, N.; Attallah, O.; Zaghloul, M.; Morsi, I.: Improved GPS/IMU loosely coupled integration scheme using two Kalman filter-based cascaded stages. Arab. J. Sci. Eng. 46, 1345–1367 (2021). https://doi.org/10.1007/s13369-020-05144-8

    Article  Google Scholar 

  3. Yuksel, A.S.; Senel, F.A.; Cankaya, I.A.: Classification of soft keyboard typing behaviors using Mobile device sensors with machine learning. Arab. J. Sci. Eng. 44, 3929–3942 (2019). https://doi.org/10.1007/s13369-018-03703-8

    Article  Google Scholar 

  4. Ahmed, F.; Mohanta, J.; Keshari, A.; Yadav, P.S.: Recent advances in unmanned aerial vehicles: a review. Arab J Sci Eng (2022). https://doi.org/10.1007/s13369-022-06738-0

    Article  Google Scholar 

  5. Cui, Y.; Zhang, Y.; Wang, Z.; Fu, H.: Integrated WiFi/MEMS indoor navigation based on searching space limiting and self-calibration. Arab. J. Sci. Eng. 45, 3015–3024 (2020). https://doi.org/10.1007/s13369-019-04249-z

    Article  Google Scholar 

  6. Sheikhaleh, A.; Jafari, K.; Abedi, K.: Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system. IEEE Sens. J. 19, 144–150 (2018). https://doi.org/10.1109/JSEN.2018.2875076

    Article  Google Scholar 

  7. Xia, D.; Huang, L.; Zhao, L.: A new design of an MOEMS gyroscope based on a WGM microdisk resonator. Sensors 19, 2798 (2019). https://doi.org/10.3390/s19122798

    Article  Google Scholar 

  8. Oke, A.S.: Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06838-x

    Article  Google Scholar 

  9. Ren, X.; Zhou, X.; Yu, S.; Wu, X.; Xiao, D.: Frequency-modulated mems gyroscopes: a review. IEEE Sens. J. (2021). https://doi.org/10.1109/JSEN.2021.3117939

    Article  Google Scholar 

  10. Y.L. Li, Micro-optical-electro-mechanical systems (MOEMS) sensors based on cavity optomechanics, in: Laser Resonators, Microresonators, and Beam Control XXIII, SPIE, pp. 68–73, 2021. https://doi.org/10.1117/12.2577184

  11. Shen, X.; Zhao, L.; Xia, D.: Research on the Disc Sensitive Structure of a Micro Optoelectromechanical System (MOEMS) Resonator Gyroscope. Micromachines 10, 264 (2019). https://doi.org/10.3390/mi10040264

    Article  Google Scholar 

  12. Hassan, J.N; Yan, X; Wu, J; Chen. D Muhammad, S; Eyouemou, A.E; Huang, Y; Wen, G: Design of optical gyroscope based on the cavity optomechanics structure, in: 2022 Photonics & Electromagnetics Research Symposium (PIERS), IEEE, pp. 585–592, 2022. https://doi.org/10.1109/PIERS55526.2022.9792738

  13. Morlans, M; Guérard, J; Juillard J: Characterization of electrical and mechanical coupling in MEMS gyroscopes with electrical measurements, in: 2021 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), IEEE, pp. 01–04, 2021. https://doi.org/10.1109/DTIP54218.2021.9568500

  14. Wang, Y.; Cao, R.; Li, C.; Dean, R.N.: Concepts, roadmaps and challenges of ovenized MEMS gyroscopes: a review. IEEE Sens. J. 21, 92–119 (2020). https://doi.org/10.1109/JSEN.2020.3012484

    Article  Google Scholar 

  15. Chi, C.-Y.; Chen, T.-L.: Compensation of imperfections for vibratory gyroscope systems using state observers. Sensors Trans. 6, 128 (2009)

    Google Scholar 

  16. Xie, K.; Zhang, R.; Xin, C.; Jin, L.; Wang, Z.; Wang, Z.; Li, M.; Zhao, H.: Micro-opto-electro-mechanical gyroscope based on the Talbot effect of a single-layer near-field diffraction grating. Appl. Opt. 60, 3724–3731 (2021). https://doi.org/10.1364/AO.420541

    Article  Google Scholar 

  17. Maier, S.A.: Plasmonics: fundamentals and applications. Springer (2007). https://doi.org/10.1007/0-387-37825-1

    Article  Google Scholar 

  18. Berini, P.: Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484–588 (2009). https://doi.org/10.1364/AOP.1.000484

    Article  Google Scholar 

  19. Sharma, P.; Kumar, V.D.: Hybrid insulator metal insulator planar plasmonic waveguide-based components. IEEE Photon. Technol. Lett. 29, 1360–1363 (2017). https://doi.org/10.1109/LPT.2017.2722827

    Article  Google Scholar 

  20. Li, E.; Chong, X.; Ren, F.; Wang, A.X.: Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array. Opt. Lett. 41, 1913–1916 (2016). https://doi.org/10.1364/OL.41.001913

    Article  Google Scholar 

  21. Huang, J.; Wen, Q.; Nie, Q.; Chang, F.; Zhou, Y.; Wen, Z.: Miniaturized NIR spectrometer based on novel MOEMS scanning tilted grating. Micromachines 9, 478 (2018). https://doi.org/10.3390/mi9100478

    Article  Google Scholar 

  22. Li, M.; Wang, Z.; Geng, H.; Wu, Q.; Zhang, R.; Cui, Z.; Wang, X.; Wang, G.: Structural design and simulation of a micro-gyroscope based on nano-grating detection. Microsyst. Technol. 25, 1627–1637 (2019). https://doi.org/10.1007/s00542-019-04420-4

    Article  Google Scholar 

  23. Chen, C.-Y.; Li, M.-H.; Zope, A.A.; Li, S.-S.: A CMOS-integrated MEMS platform for frequency stable resonators-Part I: Fabrication, implementation, and characterization. J. Microelectromech. Syst. 28, 744–754 (2019). https://doi.org/10.1109/JMEMS.2019.2936149

    Article  Google Scholar 

  24. Li, Y.-C.M.; Huang, C.-M.; Chang, W.-C.; Lin, K.-J.; Chang, S.-C.; Yao, S.-C.: Novel design of Sagnac interferometry assisted with surface plasmon resonance based sensor technique. Optics Communications 284, 3369–3377 (2011). https://doi.org/10.1016/j.optcom.2011.03.015

    Article  Google Scholar 

  25. Zhang, T.; Qian, G.; Wang, Y.-Y.; Xue, X.-J.; Shan, F.; Li, R.-Z.; Wu, J.-Y.; Zhang, X.-Y.: Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep03855

    Article  Google Scholar 

  26. Qian, G.; Fu, X.-C.; Zhang, L.-J.; Tang, J.; Liu, Y.-R.; Zhang, X.-Y.; Zhang, T.: Hybrid fiber resonator employing LRSPP waveguide coupler for gyroscope. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/srep41146

    Article  Google Scholar 

  27. Selvakumar, V.; Sujatha, L.; Balasubramanian, V.: Constructing and characterizing a novel MEMS-based Tuning Fork Gyroscope using PolyMUMPs. Microsyst. Technol. 27, 2847–2855 (2021). https://doi.org/10.1007/s00542-020-05129-5

    Article  Google Scholar 

  28. PDB230A Manual: https://www.thorlabs.com/thorproduct.cfm?partnumber=PDB230A

  29. Mohammadi, M.; Olyaee, S.; Seifouri, M.: Passive integrated optical gyroscope based on photonic crystal ring resonator for angular velocity sensing. SILICON 11, 2531–2538 (2019). https://doi.org/10.1007/s12633-018-0040-9

    Article  Google Scholar 

  30. Savchenkov, A.A.; Liang, W.; Ilchenko, V.; Matsko, A.; Maleki, L.: Crystalline waveguides for optical gyroscopes. IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018). https://doi.org/10.1109/JSTQE.2018.2818467

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank from Shahid Beheshti University (SBU), Tehran, Iran, for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Abedi.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (GIF 13022 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholinejad, J., Abedi, K. Designing of a MOEMS Gyroscope Based on an Asymmetric-Grating Hybrid-Plasmonic ROC. Arab J Sci Eng 48, 15003–15014 (2023). https://doi.org/10.1007/s13369-023-07868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07868-9

Keywords

Navigation