Skip to main content
Log in

Structural design and simulation of a micro-gyroscope based on nano-grating detection

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The central concept underpinning the operation of the micro-gyroscope is the detection of the weak Coriolis force. We describe in detail the working principle of an optical micro-gyroscope based on nano-grating detection. A double-layer reflective metal nano-grating is used to detect the Coriolis force acting on the gyroscope. To analyze its structural sensitivity, a simulation model of the gyroscope is configured, results from which show that the structure achieves good modal matching and a structural sensitivity of 6.402 nm/°/s. Furthermore, the structure of the nano-grating is analyzed in an optical simulation, and a tolerance analysis is performed of several structural parameters to gain insight into realizing an actual device. Finally, a model of the gyroscope system was implemented in the SIMULINK environment. Using parameter values obtained from calculations, simulations of the nano-grating gyroscope gave a total sensitivity of 3.03 mv/°/s, along with a theoretical noise floor of 5.95 × 10−5°/s/√Hz. This confirms that the proposed optical micro-gyroscope performs well as designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acar C, Shkel AM (2005) Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. J Micromech Microeng 15(5):1092–1101

    Article  Google Scholar 

  • Alper SE, Azgin K, Akin T (2006) High-performance SOI-MEMS Gyroscope with decoupled oscillation modes. In: J IEEE International Conference on Micro Electro Mechanical Systems, pp 70–73

  • Annovazzi-Lodi V, Merlo S, Norgia M, Spinola G, Vigna B, Zerbini S (2003) Optical detection of the coriolis force on a silicon micromachined gyroscope. J Microelectromech Syst 12(5):540–549

    Article  Google Scholar 

  • Ayanoor-Vitikkate V, Chen KL, Park WT, Kenny TW (2009) Development of wafer scale encapsulation process for large displacement piezoresistive MEMS devices. Sens Actuators A 156(2):275–283

    Article  Google Scholar 

  • Ayazi F, Najafi K (2001) A HARPSS polysilicon vibrating ring gyroscope. J Microelectrochem Syst 10(2):169–179

    Article  Google Scholar 

  • Carr DW, Sullivan JP, Friedmann TA (2003) Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett 28(18):1636–1638

    Article  Google Scholar 

  • Chan HB, Marcet Z, Woo K, Tanner DB, Carr DW (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516–518

    Article  Google Scholar 

  • Guan Y, Gao S, Liu H, Jin L, Niu S (2016) Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16(4):468

    Article  Google Scholar 

  • Guo ZY, Lin LT, Zhao QC, Yang ZC, Xie H, Yan GZ (2010) A lateral-axis microelectromechanical tuning-fork gyroscope with decoupled comb drive operating at atmospheric pressure. J Microelectromech Syst 19(3):458–468

    Article  Google Scholar 

  • He Y, Wu X, Zheng F, Chen W, Zhang W, Cui F, Liu W (2014) Closed loop driving and detect circuit of piezoelectric solid-state micro gyroscope. Microsyst Technol 20(2):185–191

    Article  Google Scholar 

  • Hsu CC, Wu CC, Lee JY, Chen HY, Weng HF (2008) Reflection type heterodyne grating interferometry for in-plane displacement measurement. Opt Commun 281(9):2582–2589

    Article  Google Scholar 

  • Jiao X, Bai J, Lu Q, Lou S (2016) The modulation and demodulation module of a high resolution MOEMS accelerometer. J Phys 679(1):012016

    Google Scholar 

  • Kim JA, Kim KC, Bae EW, Kim S, Kwak YK (2000) Six-degree-of-freedom displacement measurement system using a diffraction grating. Rev Sci Instrum 71(8):3214–3219

    Article  Google Scholar 

  • Krishnamoorthy U, Carr DW, Bogart GR, Baker MS, and Olsson RH (2007) In-plane nano-g accelerometer based on an optical resonant detection system. In: Proceedings of IEEE conference on solid-state sensors, actuators & microsystems conference, Transducers International pp 1195–1198

  • Li M, Deng T, Du K, Chu WH, Liu J (2016) Fabrication and characterization of a microaccelerometer based on resonant tunneling diodes. J Micro/Nanolithogr MEMS MOEMS 15(1):015001

    Article  Google Scholar 

  • Lu Q, Wang C, Bai J et al (2016) Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt Express 24(8):9094

    Article  Google Scholar 

  • Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(3):1–15

    Google Scholar 

  • Merdassi A, Kezzo MN (2017) Wafer-level vacuum-encapsulated rate gyroscope with hign quality factor in a commercial MEMS process. Microsyst Technol 23:3745–3756

    Article  Google Scholar 

  • Myung H, Lee HK, Choi K, Bang S (2010) Mobile robot localization with gyroscope and constrained Kalman filter. Int J Control Autom Syst 8(3):667–676

    Article  Google Scholar 

  • Ren MY, Zhang HF, Liu XW, Mao ZG (2014) High resolution capacitance detection circuit for rotor micro-gyroscope. AIP Adv 4(3):31

    Google Scholar 

  • Rombach S, Marx M, Nessler S, De Dorigo D, Maurer M, Manoli Y (2016) An interface asic for mems vibratory gyroscopes with a power of 1.6 mw, 92 db dr and 0.007°/s/√hz noise floor over a 40 hz band. IEEE J Solid-State Circuits 51(8):1–13

    Article  Google Scholar 

  • Sanathanan M, Maciej B, Shakil R, Liangxing H, Jianmin M (2017) Mems tunable diffraction grating for spaceborne imaging spectroscopic applications. Sensors 17(10):2372

    Article  Google Scholar 

  • Shcheglov K, Evans C, Gutierrez R, Tang TK (2000) Temperature dependent characteristics of the JPL silicon MEMS gyroscope. Aerosp Conf 1:403–411

    Google Scholar 

  • Sonmezoglu S, Alper SE, Akin T (2014) An automatically mode-matched mems gyroscope with wide and tunable bandwidth. J Microelectromech Syst 23(2):284–297

    Article  Google Scholar 

  • Sung W, Sung S, lee J, Kang T (2007) Design and performance test of a MEMS vibratory gyroscope with a novel AGC force rebalance control. J Micromech Microeng 17(10):1939–1948

    Article  Google Scholar 

  • Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. JMEMS 21(3):656–667

    Google Scholar 

  • Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. In: Proceedings of IEEE conference on position, location & navigation symposium-plans pp 16–20

  • Wang C, Yang G, Bai J et al (2015a) Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt 54(13):4188–4196

    Article  Google Scholar 

  • Wang C, Lu Q, Bain J, Wang K (2015b) Tolerance analysis and optimization of a lateral deformable NEMS zeroth-order grating. Opt Commun 355:356–366

    Article  Google Scholar 

  • Wood RW (1935) Anomalous diffraction gratings. Phys Rev 48(12):928–936

    Article  Google Scholar 

  • Xia D, Yu C, Kong L (2014) “The development of micromachined gyroscope structure and circuitry technology. Sensors 14(1):1394–1473

    Article  Google Scholar 

  • Xia D, Hu Y, Kong L, Chang C (2015) Design of a digitalized microgyroscope system using $\Sigma \Delta $ modulation technology. IEEE Sens J 15(7):3793–3806

    Article  Google Scholar 

  • Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectron Eng 142:22–29

    Article  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (NSFC) (61573323, 61705200); National Key R&D Program of China (2017YFF0105200). The authors would like to thank the Suzhou Institute of Nano-Tech and Nano-Bionics for the guidance of model design. We thank Richard Haase, Ph.D, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengwei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Z., Geng, H. et al. Structural design and simulation of a micro-gyroscope based on nano-grating detection. Microsyst Technol 25, 1627–1637 (2019). https://doi.org/10.1007/s00542-019-04420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04420-4

Navigation