Skip to main content
Log in

Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. CMEs that apparently lack the associated near-surface activity were known even from the Skylab observations, and called “spontaneous CMEs” (Wagner 1984).

  2. http://wind.nasa.gov/ICMEindex.php . See Nieves-Chinchilla et al. (2017).

  3. http://space.ustc.edu.cn/dreams/wind_icmes . See Chi et al. (2016).

  4. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm . See Cane and Richardson (2003) and Richardson and Cane (2010).

  5. http://solar.gmu.edu/heliophysics/index.php/GMU_CME/ICME_List . See Hess and Zhang (2017).

  6. See http://solar.gmu.edu/heliophysics/index.php/10/08/2012_05:00:00_UTC and Webb and Nitta (2017).

  7. See http://solar.gmu.edu/heliophysics/index.php/05/31/2013_15:30:00_UTC and Webb and Nitta (2017).

References

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York. ADS .

    Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, 1156. DOI . ADS .

    Article  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F., Peter, H., et al.: 2015, Thermal diagnostics with the atmospheric imaging assembly on board the Solar Dynamics Observatory: A validated method for differential emission measure inversions. Astrophys. J. 807, 143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., Wang, S.: 2016, Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Solar Phys. 291, 2419. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Kahler, S.W., Larson, D.E., Lin, R.P.: 2004, Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109, A03108. DOI . ADS .

    ADS  Google Scholar 

  • D’Huys, E., Seaton, D.B., Poedts, S., Berghmans, D.: 2014, Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J. 795, 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mathrm{Dst} \leq-100~\mbox{nT}\)) during solar cycle 23 (1996 – 2006). J. Geophys. Res. 113, A05221. DOI . ADS .

    ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hess, P., Zhang, J.: 2017, A study of the Earth-affecting CMEs of Solar Cycle 24. Solar Phys. 292, 80. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: A perspective. Solar Phys. 285, 269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Michels, D.J., Sheeley, N.R. Jr., Koomen, M.J.: 1982, The observation of a coronal transient directed at Earth. Astrophys. J. Lett. 263, L101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Sheeley, N.R. Jr., Michels, D.J., Koomen, M.J.: 1985, Coronal mass ejections – 1979 – 1981. J. Geophys. Res. 90, 8173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106, 25199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum. Solar Phys. 289, 3773. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kurita, S., Miyoshi, Y., Blake, J.B., Reeves, G.D., Kletzing, C.A.: 2016, Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8 – 9 October 2012 storm: SAMPEX and Van Allen probes observations. Geophys. Res. Lett. 43, 3017. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Jurcevich, B.K., Morrison, M.D., et al.: 2004, The solar X-ray imager for GOES. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, SPIE CS 5171, 65. DOI . ADS .

    Chapter  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Hu, H., Wang, C., Luhmann, J.G., Richardson, J.D., Yang, Z., et al.: 2016, On Sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others. Astrophys. J. Suppl. 222, 23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Downs, C., Shibata, K., Roussev, I.I., Asai, A., Gombosi, T.I.: 2011, Numerical investigation of a coronal mass ejection from an anemone active region: Reconnection and deflection of the 2005 August 22 eruption. Astrophys. J. 738, 127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., et al.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115, A07106. DOI . ADS .

    ADS  Google Scholar 

  • Lynch, B.J., Masson, S., Li, Y., DeVore, C.R., Luhmann, J.G., Antiochos, S.K., et al.: 2016, Amodel for stealth coronalmass ejections. J. Geophys. Res. 121, 10677. DOI . ADS .

    Article  Google Scholar 

  • Ma, S., Attrill, G.D.R., Golub, L., Lin, J.: 2010, Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722, 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 51, 147. DOI . ADS .

    Google Scholar 

  • Marubashi, K., Cho, K.-S., Ishibashi, H.: 2017, Interplanetary magnetic flux rope as agent connecting solar eruptions and geomagnetic activities. Solar Phys..

  • Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Stenborg, G., Savani, N.P., Koval, A., Szabo, A., et al.: 2013, Inner heliospheric evolution of a “stealth” CME derived from multi-view imaging and multipoint in situ observations. I. Propagation to 1 AU. Astrophys. J. 779, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P.,et al.: 2017, Understanding the internal magnetic field configuration of ICMEs using 20+ years of Wind observations. Solar Phys., submitted.

  • Nitta, N.V., DeRosa, M.L.: 2008, A comparison of solar open field regions found by type III radio bursts and the potential field source surface model. Astrophys. J. Lett. 673, L207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Aschwanden, M.J., Freeland, S.L., Lemen, J.R., Wülser, J.-P., Zarro, D.M.: 2014, The association of solar flares with coronal mass ejections during the extended solar minimum. Solar Phys. 289, 1257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Panasenco, O., Martin, S.F.: 2012, Coronal mass ejections from magnetic systems encompassing filament channels without filaments. Solar Phys. 277, 185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reeves, G.D., Spence, H.E., Henderson, M.G., Morley, S.K., Friedel, R.H.W., Funsten, H.O., et al.: 2013, Electron acceleration in the heart of the Van Allen radiation belts. Science 341, 991. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., et al.: 2006, Major geomagnetic storms (\(\mathrm{Dst} \leq-100~\mbox{nT}\)) generated by corotating interaction regions. J. Geophys. Res. 111, A07S09. DOI . ADS .

    Article  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J., Harvey, J.W., Harvey, K.L.: 1982, Observations of coronal structure during sunspot maximum. Space Sci. Rev. 33, 219. DOI . ADS .

    Article  ADS  Google Scholar 

  • Svestka, Z., Cliver, E.W.: 1992, History and basic characteristics of eruptive flares. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Coll. 133: Eruptive Solar Flares, Lect. Notes Phys., 399, 1, Springer, Berlin. DOI . ADS .

    Chapter  Google Scholar 

  • Thorne, R.M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al.: 2013, Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lee, Y.T., Gonzalez, W.D., Tang, F.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • UeNo, S., Nagata, S.-i., Kitai, R., Kurokawa, H., Ichimoto, K.: 2004, The development of filter vector magnetographs for the Solar Magnetic Activity Research Telescope (SMART). In: Moorwood, A.F.M., Iye, M. (eds.) Ground-based Instrumentation for Astronomy, SPIE CS 5492, 958. DOI . ADS .

    Chapter  Google Scholar 

  • van der Holst, B., Manchester, W. IV, Sokolov, I.V., Tóth, G., Gombosi, T.I., DeZeeuw, D., et al.: 2009, Breakout coronal mass ejection or streamer blowout: The bugle effect. Astrophys. J. 693, 1178. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Colaninno, R., Nieves-Chinchilla, T., Stenborg, G.: 2011, The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J. Lett. 733, L23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wagner, W.J.: 1984, Spontaneous coronal mass ejections. Bull. Amer. Astron. Soc. 16, 536. ADS .

    ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, A04104. DOI . ADS .

    ADS  Google Scholar 

  • Webb, D.F., Nitta, N.V.: 2017, Study on understanding problem forecasts of ISEST campaign flare-CME events. Solar Phys., in press.

  • Webb, D.F., Cliver, E.W., Crooker, N.U., Cry, O.C.S., Thompson, B.J.: 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., et al.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} \leq-100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI . ADS .

    ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for detailed comments that greatly helped us improve the article. This work was motivated by scientific discussions through the International Study of Earth-affecting Solar Transient (ISEST), one of the four elements of the Variability of the Sun and Its Terrestrial Impact (VarSITI) program under the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The authors acknowledge support from NASA grant NNX17AB73G. NVN was partially supported by the NASA AIA contract NNG04EA00C and the NASA STEREO mission under NRL Contract No. N00173-02-C-2035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariaki V. Nitta.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, N.V., Mulligan, T. Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures. Sol Phys 292, 125 (2017). https://doi.org/10.1007/s11207-017-1147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1147-7

Keywords

Navigation