Skip to main content
Log in

Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We establish a catalog of interplanetary coronal mass ejections (ICMEs) during the period from 1995 to 2015 using the in-situ observations from the Wind and ACE spacecraft. Based on this catalog, we extend the statistical properties of ICMEs to the maximum phase of Solar Cycle 24. We confirm previous results that the yearly occurrence frequencies of ICMEs and shocks, the ratios of ICMEs driving shocks are correlated with the sunspot numbers. For the magnetic cloud (MC), we confirm that the yearly occurrence frequencies of MCs do not show any correlation with sunspot numbers. The highest MC ratio of ICME occurred near the solar minimum. In addition, we analyzed the yearly variation of the ICME parameters. We found that the ICME velocities, the magnetic-field strength, and their related parameters are varied in pace with solar-cycle variation. At the solar maximum, ICMEs move faster and carry a stronger magnetic field. By comparing the parameters between MCs and non-MC ejecta, we confirm the result that the magnetic-field intensities of MC are higher than those in non-MC ejecta. Furthermore, we also discuss the forward shocks driven by ICMEs. We find that one half of the ICMEs have upstream shocks and ICMEs with shocks have faster speed and higher magnetic-field strength than the ICMEs without shocks. The magnetic-field parameters and solar-wind plasma parameters in the shock sheath regions are higher than those in the ejecta regions of ICMEs from a statistical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Berdichevsky, D.B., Szabo, A., Lepping, R.P., Viñas, A.F., Mariani, F.: 2000, Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years. J. Geophys. Res. 105(A12), 27289. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. Space Phys. 86, 6673. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H., Reinard, A.: 2001, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998 – 1999. J. Geophys. Res. 106(A), 20957.

    Article  ADS  Google Scholar 

  • Cane, H.V., Lario, D.: 2006, An introduction to CMEs and energetic particles. Space Sci. Rev. 123(1 – 3), 45.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003a, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. Space Phys. 108, 1156. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003b, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108(A), 1156. ADS .

    Article  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102, 7075. ADS .

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422(1), 307.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T.: 2008, Interplanetary conditions leading to superintense geomagnetic storms (\(\mathrm{Dst} < -250~mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 35(6), L06S03.

    Article  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99(A4), 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.T.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst}< -100~\mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 34(6), L06101.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Gonzalez, A.L., Lago, A.: 2011, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158(1), 69.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124(1), 145.

    ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., Howard, R.A.: 2003, Coronal mass ejection activity during solar cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, International Solar Cycle Studies (ISCS) SP-535, ESA, Noordwijk, 403.

    Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Physics of magnetic flux ropes (A92-31201 12-75), American Geophysical Union, Washington, 343.

    Chapter  Google Scholar 

  • Gosling, J.T., Pizzo, V., Bame, S.J.: 1973, Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? J. Geophys. Res. 78(13), 2001. DOI .

    Article  ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Wang, S.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111.

    Article  ADS  Google Scholar 

  • Hau, L.-N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. Space Phys. 104(A4), 6899. DOI .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28(3), 467.

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U..: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. Space Phys. 107(A7), 1. DOI .

    Article  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Phys. 274(1 – 2), 321. DOI .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239(1-2), 393. DOI .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys. 254(2), 325.

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2012, Observations of ICMEs and ICME-like solar wind structures from 2007 – 2010 using near-Earth and STEREO observations. Solar Phys. 281(1), 391. DOI .

    ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the solar cycle 23/24 minimum. Solar Phys. 289(10), 3773. DOI .

    Article  ADS  Google Scholar 

  • Klein, L.W.., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. Space Phys. 87(1), 613.

    Article  ADS  Google Scholar 

  • Koval, A., Szabo, A.: 2008, Modified “Rankine–Hugoniot” shock fitting technique: Simultaneous solution for shock normal and speed. J. Geophys. Res. 113(A10), A10110.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. Space Phys. 95(90), 957.

    Google Scholar 

  • Lepping, R.P., Wu, C.-C.: 2007, On the variation of interplanetary magnetic cloud type through solar cycle 23: Wind events. J. Geophys. Res. 112(A10), A10103.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2015, Yearly comparison of magnetic cloud parameters, sunspot number, and interplanetary quantities for the first 18 years of the wind mission. Solar Phys. 290(2), 553. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, a.J., Quivers, a.J.: 2006a, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24(1), 215. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, a.J., Quivers, a.J.: 2006b, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24(1), 215. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 200 – 2009 solar minimum: Frequency of occurrence and some unusual properties. Solar Phys. 274(1 – 2), 345. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 – 2012: Model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys. 290(8), 2265. DOI .

    Article  ADS  Google Scholar 

  • Lugaz, N., Kintner, P.: 2012, Effect of solar wind drag on the determination of the properties of coronal mass ejections from heliospheric images. Solar Phys. 285(1), 281. DOI .

    ADS  Google Scholar 

  • Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 37(2), 24103. ADS .

    ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31(18), 8. DOI .

    Article  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Ye, P., Zhao, X.P., Gui, B., Wang, S.: 2007, Strength of coronal mass ejection-driven shocks near the sun and their importance in predicting solar energetic particle events. Astrophys. J. 670(1), 849.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269(2), 389. ADS .

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Pan, Z., Miao, B., Ye, P., Wang, S.: 1014, Full-halo coronal mass ejections: Arrival at the Earth. J. Geophys. Res. Space Phys. 119(7), 5107. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285(1 – 2), 295. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Colaninno, R.: 2014, Is solar cycle 24 producing more coronal mass ejections than cycle 23? Astrophys. J. 784(2), L27. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S.: 2003, Multiple magnetic clouds: Several examples during March–April 2001. J. Geophys. Res. Space Phys. 108(A10), 1370. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X.: 2002, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. 107(A11), 1340.

    Article  Google Scholar 

  • Wang, Y., Shen, C.L., Wang, S., Ye, P.Z.: 2003, An empirical formula relating the geomagnetic storm’s intensity to the interplanetary parameters: VBz and Delta t. Geophys. Res. Lett. 30(20), 2039. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116(A4), A04104.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. Space Phys. 120(3), 1543. DOI .

    Article  ADS  Google Scholar 

  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Horbury, T., Kilchenmann, A., Richardson, I.G., Richardson, J.D., Riley, P., Rodriguez, L., Steiger, R.V., Wurz, P., Zurbuchen, T.H.: 2006, Understanding interplanetary coronal mass ejection signatures. Report of working group B. Space Sci. Rev. 123(1), 177.

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2007, Comparison of the characteristics of magnetic clouds and magnetic cloud-like structures for the events of 1995 – 2003. Solar Phys. 242(1 – 2), 159.

    Article  ADS  Google Scholar 

  • Wu, C.C., Lepping, R.P.: 2008, Geomagnetic activity associated with magnetic clouds, magnetic cloud-like structures and interplanetary shocks for the period 1995 – 2003. Adv. Space Res. 41(2), 335. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2011, Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar Cycle 23. Solar Phys. 269(1), 141. ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys. 290(4), 1243. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.C., Lepping, R.P.: 2016, Relationships among geomagnetic storms, interplanetary shocks, magnetic clouds, and sunspot number during 1995 – 2012. Solar Phys. 291(1), 265. doi: DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P., Gopalswamy, N.: 2006, Relationships among magnetic clouds, CMES, and geomagnetic storms. Solar Phys. 239(1), 449.

    Article  ADS  Google Scholar 

  • Wu, C.C., Gopalswamy, N., Lepping, R.P., Yashiro, S.: 2013, Characteristics of magnetic clouds and interplanetary coronal mass ejections which cause intense geomagnetic storms. Terr. Atmos. Ocean. Sci. 24(2), 233. DOI .

    Article  Google Scholar 

  • Xue, X.H., Wang, Y., Ye, P.Z., Wang, S., Xiong, M.: 2005, Analysis on the interplanetary causes of the great magnetic storms in solar maximum (2000 – 2001). Planet. Space Sci. 53(4), 443. ADS .

    Article  ADS  Google Scholar 

  • Yermolaev, Y.I., Yermolaev, M.Y.: 2006, Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res. 37(6), 1175.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst}\le-100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A10), A10102.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(2006), 31. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the data from Wind and ACE spacecraft. We also thank the Harvard-Smithsonian Center for Astrophysics Interplanetary Shock Database (supported by NASA grant number NNX13AI75G) for using their shock parameters. We thank the anonymous referee for the constructive comments. This work is supported by grants from MOST 973 key project (2011CB811403), CAS (Key Research Program KZZD-EW-01 and 100-Talent Program), NSFC (41131065, 41121003, 41274173, 41222031 and 41404134), the fundamental research funds for the central universities and the Specialized Research Fund for State Key Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Y., Shen, C., Wang, Y. et al. Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015. Sol Phys 291, 2419–2439 (2016). https://doi.org/10.1007/s11207-016-0971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0971-5

Keywords

Navigation