Skip to main content
Log in

Comprehensive Characterization of the Dynamics of Two Coronal Mass Ejections in the Outer Corona

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) play a key role in determining space-weather conditions. Therefore, it is important to understand their evolution throughout the heliosphere. In this work, we carefully analyze the evolution of two kinematically different CMEs that erupted on 16 June 2010 and 14 June 2011, in a range of heliospheric distances of approximately 4 – 18 solar radii. From nearly simultaneous coronagraph images from the Solar-Terrestrial Relations Observatory and Solar and Heliospheric Observatory, we estimate the three-dimensional speed and acceleration–time profiles. We use these profiles to calculate the dynamic and thermodynamic parameters of the CMEs, such as the contribution of the forces and the polytropic index by means of the Flux Rope Internal State (FRIS) model, which assumes a self-similar evolution. We further test the validity of this assumption by comparing with observed quantities near the Sun and at 1 AU. We find that the kinematic properties of the two events differ in their evolution, which has an impact on the relative importance of the internal forces and on the thermodynamic quantities. In addition, our analysis reveals that the assumption of self-similar evolution is valid for the behavior in the middle corona for both events. At larger distances, however, this only holds for the 16 June 2010 event, which is significantly slower than the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aschwanden, M.J., Nitta, N.V., Wuelser, J.-P., Lemen, J.R., Sandman, A., Vourlidas, A., Colaninno, R.C.: 2009, First measurements of the mass of coronal mass ejections from the EUV dimming observed with STEREO EUVI A+B spacecraft. Astrophys. J. 706, 376. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D.N.: 2009, What does space weather cost modern societies? Space Weather 7, 02003. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Vourlidas, A., Stenborg, G., Dal Lago, A.: 2018, How reliable are the properties of coronal mass ejections measured from a single viewpoint? Astrophys. J. 863, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Vourlidas, A., Stenborg, G., St. Cyr, O.C.: 2020, On the expansion speed of coronal mass ejections: implications for self-similar evolution. Solar Phys. 295, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Vourlidas, A., Stenborg, G., Kwon, R.-Y.: 2022, The hyper-inflation stage in the coronal mass ejection formation: a missing link that connects flares, coronal mass ejections, and shocks in the low corona. Astrophys. J. 931, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bein, B.M., Temmer, M., Vourlidas, A., Veronig, A.M., Utz, D.: 2013, The height evolution of the “true” coronal mass ejection mass derived from STEREO COR1 and COR2 observations. Astrophys. J. 768, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Cremades, H., Iglesias, F.A., Merenda, L.A.: 2020, Asymmetric expansion of coronal mass ejections in the low corona. Astron. Astrophys. 635, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feigelson, E.D., Babu, G.J.: 2012, Modern Statistical Methods for Astronomy, Cambridge University Press, Cambridge UK. DOI. ADS.

    Book  Google Scholar 

  • Feng, L., Wang, Y., Shen, F., Shen, C., Inhester, B., Lu, L., Gan, W.: 2015, Why does the apparent mass of a coronal mass ejection increase? Astrophys. J. 812, 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, The speeds of coronal mass ejection events. Solar Phys. 48, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Holzknecht, L., Temmer, M., Dumbović, M., Wellenzohn, S., Krikova, K., Heinemann, S.G., Rodari, M., Vršnak, B., Veronig, A.M.: 2018, CME volume calculation from 3D GCS reconstruction. Cent. Eur. Astrophys. Bull. 42, 3. ADS.

    ADS  Google Scholar 

  • Howard, R.A., Sheeley, J.N.R., Michels, D.J., Koomen, M.J.: 1985, Coronal mass ejections: 1979 – 1981. J. Geophys. Res. 90, 8173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jin, M., Manchester, W.B., van der Holst, B., Sokolov, I., Tóth, G., Mullinix, R.E., Taktakishvili, A., Chulaki, A., Gombosi, T.I.: 2017, Data-constrained coronal mass ejections in a global magnetohydrodynamics model. Astrophys. J. 834, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kay, C., Nieves-Chinchilla, T., Hofmeister, S.J., Palmerio, E.: 2022, Beyond basic drag in interplanetary CME modeling: effects of solar wind pileup and high-speed streams. Space Weather 20, e2022SW003165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khuntia, S., Mishra, W., Mishra, S.K., Wang, Y., Zhang, J., Lyu, S.: 2023, Unraveling the thermodynamic enigma between fast and slow coronal mass ejections. Astrophys. J. 958, 92. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Richardson, J.D., Belcher, J.W.: 2005, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci. 53, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Livadiotis, G.: 2016, Superposition of polytropes in the inner heliosheath. Astrophys. J. Suppl. 223, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Livadiotis, G.: 2019, On the origin of polytropic behavior in space and astrophysical plasmas. Astrophys. J. 874, 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • López, F.M., Hebe Cremades, M., Nuevo, F.A., Balmaceda, L.A., Vásquez, A.M.: 2017, Mass-loss evolution in the EUV low corona from SDO/AIA data. Solar Phys. 292, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Palmerio, E., DeVore, C.R., Kazachenko, M.D., Dahlin, J.T., Pomoell, J., Kilpua, E.K.J.: 2021, Modeling a coronal mass ejection from an extended filament channel. I. Eruption and early evolution. Astrophys. J. 914, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear Least-Squares Fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII CS–411, Astron. Soc. Pacific, San Francisco, 251. ADS.

    Google Scholar 

  • Mishra, W., Wang, Y.: 2018, Modeling the thermodynamic evolution of coronal mass ejections using their kinematics. Astrophys. J. 865, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mishra, W., Wang, Y., Lyu, S., Khuntia, S.: 2023, “Modeling the thermodynamic evolution of coronal mass ejections using their kinematics” (2018, Astrophys. J. 865, 50). Astrophys. J. 952, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nicolaou, G., Livadiotis, G., Wicks, R.T., Verscharen, D., Maruca, B.A.: 2020, Polytropic behavior of solar wind protons observed by Parker Solar Probe. Astrophys. J. 901, 26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Hidalgo, M.A., Cremades, H.: 2023, Distorted-toroidal flux rope model for heliospheric flux ropes. Astrophys. J. 947, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pulkkinen, T.: 2007, Space weather: terrestrial perspective. Liv. Rev. Solar Phys. 4, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Crooker, N.U.: 2004, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sachdeva, N., Subramanian, P., Colaninno, R., Vourlidas, A.: 2015, CME propagation: where does aerodynamic drag ‘take over’? Astrophys. J. 809, 158. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sachdeva, N., Subramanian, P., Vourlidas, A., Bothmer, V.: 2017, CME dynamics using STEREO and LASCO observations: the relative importance of Lorentz forces and solar wind drag. Solar Phys. 292, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Davies, J.A.: 2010, Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind. Astrophys. J. Lett. 714, L128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Kusano, K., Shiota, D., Kataoka, R.: 2011, Evolution of coronal mass ejection morphology with increasing heliocentric distance. I. Geometrical analysis. Astrophys. J. 731, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Space weather: the solar perspective. Liv. Rev. Solar Phys. 3, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A.N., Vichare, G., D’Amicis, R., Telloni, D.: 2023, Evidence for superadiabatic heating and cooling of Alfvénic solar wind. Mon. Not. Roy. Astron. Soc. 519, L62. DOI. ADS.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C. Burkepile, J.T., Hundhausen, A.J., Lecinski, A.R.: 1999, A comparison of ground-based and spacecraft observations of coronal mass ejections from 1980 – 1989. J. Geophys. Res. 104, 12493. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712, 1410. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A., Howard, R.A.: 2009, Forward modeling of CMEs using STEREO-SECCHI data. In: EGU General Assembly Conf. Abs 11, 2170. ADS.

    Google Scholar 

  • Totten, T.L., Freeman, J.W., Arya, S.: 1995, An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J. Geophys. Res. 100, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-Angle Spectrometric Coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhang, J., Shen, C.: 2009, An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J. Geophys. Res. Space Phys. 114, A10104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res. Space Phys. 121, 9316. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhu, C., Qiu, J., Liewer, P., Vourlidas, A., Spiegel, M., Hu, Q.: 2020, How does magnetic reconnection drive the early-stage evolution of coronal mass ejections? Astrophys. J. 893, 141. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

L. Di Lorenzo is a doctoral fellow of CONICET. H. Cremades is a member of the Carrera del Investigador Científico (CONICET). The authors thank the anonymous reviewer for the comments and suggestions, which have substantially improved the quality of this article. The authors acknowledge use of data from the STEREO (NASA) and SOHO (ESA/NASA) missions, produced by the SECCHI and LASCO international consortia. The STEREO/SECCHI data used here were produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut for Solar System Research (Germany), Centre Spatiale de Liège (Belgium), Institut d’Optique Théorique et Appliquée (France), and Institut d’Astrophysique Spatiale (France). The USA institutions were funded by NASA, the UK institutions by the Science & Technology Facility Council (which used to be the Particle Physics and Astronomy Research Council, PPARC), the German institutions by Deutsches Zentrum für Luftund Raumfahrt e.V. (DLR), the Belgian institutions by the Belgian Science Policy Office, and the French institutions by the Centre National d’Etudes Spatiales (CNES) and the Centre National de la Recherche Scientifique (CNRS). The NRL effort was also supported by the USAF Space Test Program and the Office of Naval Research. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA.

Funding

L. Di Lorenzo and H. Cremades are supported by projects PIP11220200102710CO (CONICET) and PICT 2021-GRF-TI-00803 (Agencia). H. Cremades, L. Balmaceda, and T. Nieves-Chinchilla thank the Partnership for Heliophysics and Space Environment Research (PHaSER) NASA Cooperative Agreement for enabling the collaborative visit of H. Cremades under grant number 80NSSC21M0180.

Author information

Authors and Affiliations

Authors

Contributions

L. Di Lorenzo performed all the work reported in this article. L. Balmaceda proposed this project. L. Balmaceda and H. Cremades guided L. Di Lorenzo through the process. T. Nieves-Chinchilla suggested actions to improve this research. All authors contributed in the writing of this article.

Corresponding author

Correspondence to Leonardo Di Lorenzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: CME Mass

Since the MW18 – 23 approach assumes that the mass remains constant, we evaluate below whether this assumption holds for the two events. We estimate the CME mass and its number of electrons by means of the method described by Vourlidas et al. (2010), which is based on the scattering of photospheric light by coronal electrons. These masses are subsequently corrected to estimate the “true” mass evolution, by using the approach proposed by Bein et al. (2013). It proposes a fitting function that describes the mass evolution of the CME with height, taking into account the effect of the coronagraph occulter and the actual mass increase, due to the solar-wind mass piled up ahead of the CMEs and the mass supply by the outflow from the associated dimmings in the low corona (e.g. Aschwanden et al., 2009; Feng et al., 2015; López et al., 2017).

1.1 A.1 The CME on 16 June 2010

To estimate the mass in this event, we use STEREO-A images because the CME propagation angle with respect to the sky plane was ≈ 1. The measured mass values are plotted in Figure 11a as black triangles, while the red dashed line and the blue solid line, respectively, represent the fitting function and the mass values corrected for the effects of the occulter after Bein et al. (2013). The resulting values for the initially ejected mass [\(m_{\mathrm{0}}\)], the real mass increase per height [\(\Delta m\)], and the effective occultation size [\(h_{\mathrm{occ}}\)] are shown to the bottom right of the plot area.

Figure 11
figure 11

The Bein et al. (2013) fit and the curve accounting for the occulter effect are shown in red and blue, respectively. The inset shows the parameters arising from the aforementioned fit. (a): Mass measurements for E1. (b): Mass measurements for E2.

1.2 A.2 The CME on 14 June 2011

The propagation direction of this event was closest to the sky plane of STEREO-B, having an angle of ≈ 40. Therefore, images from this vantage point were used for the mass estimates shown in Figure 11b (black triangles). Again, the blue solid line represents the corrected mass values.

Appendix B: Electron Density

We also calculate the density of electrons. The method used to calculate the masses (Vourlidas et al., 2010) also enables estimation of the number of electrons. To determine the volume of the CME, we use the method described by Holzknecht et al. (2018), which yields the volume of the GCS geometrical figure at different heights. Finally, the electron density arises from the corrected mass values (Appendix A) and the aforementioned volume.

In Figure 12, the electron density is plotted as red triangles connected by a red solid line. The electron densities resulting from the MW18 – 23 approach, using the \(k_{7}\)-value discussed in Section 4.1 are plotted as blue solid lines.

Figure 12
figure 12

Comparison of the electron density as determined from the measurements (red triangles joined by solid line) and from the FRIS approach (blue solid line). (a) Electron density for E1. (b) Electron density for E2. In (b), the shaded bands represent the \(95\%\) bootstrap confidence intervals and the central solid line is the median curve.

Appendix C: Energies

To characterize the events in terms of their energies, we estimate the potential and kinetic energy. The first is determined from the method of Vourlidas et al. (2000), while the kinetic energy is calculated from the corrected masses (Appendix A) and the speed profiles in Figures 3c and 5c.

These energies are, however, not considered by MW18 – 23, but they do estimate the relative changes of thermal [\(E_{\mathrm{thermal}}\)] and magnetic [\(E_{\mathrm{m1}}\) and \(E_{\mathrm{m2}}\)] energies. \(E_{\mathrm{m1}}\) and \(E_{\mathrm{m2}}\) represent the magnetic energy associated with the toroidal and poloidal components of the magnetic field.

3.1 C.1 The CME on 16 June 2010

In Figure 13a, we can see the kinetic [\(E_{\mathrm{k}}\), blue diamonds], potential [\(E_{\mathrm{p}}\), red triangles], and total energies [\(E_{ \mathrm{k}} + E_{\mathrm{p}}\), black squares]. Note that the kinetic energy is an order of magnitude smaller than the potential energy. Kinetic and potential energies gradually increase along with the propagation of the event in the mid-corona. In Figure 13c, we show the thermal [\(E_{ \mathrm{thermal}}\), black solid line] and magnetic [\(E_{\mathrm{m1}}\) and \(E_{\mathrm{m2}}\), blue solid and dashed lines] energies arising from the MW18 – 23 approach, as relative changes with respect to their first value.

Figure 13
figure 13

(a) and (b) display kinetic (blue diamonds), potential (red triangles), and total (black squares) energies. (c) and (d) are relative changes of energies from the FRIS approach. The black solid line represents the thermal energy \(E_{\mathrm{thermal}}\), while blue lines are magnetic energies \(E_{\mathrm{m1}}\) and \(E_{\mathrm{m2}}\) (solid and dashed, respectively). The left panels correspond to E1, and the right panels to E2. In (d), the shaded bands represent the \(95\%\) bootstrap confidence intervals and the central solid line is the median curve.

The magnetic energies \(E_{\mathrm{m1}}\) and \(E_{\mathrm{m2}}\) are identical for the three different fits to the values of height and radius vs. time. However, for \(E_{\mathrm{thermal}}\) we chose to plot only the curve corresponding to the use of a cubic fit, to ease interpretation of the plot. The thermal energy shows a decrease of ≈ 40\(\%\) at ≈ 7.5 R and then slowly starts to increase. Both of the magnetic energies significantly decrease throughout the CME propagation.

3.2 C.2 The CME on 14 June 2011

Figure 13b shows the kinetic (blue diamonds), potential (red triangles), and total energies (black squares). For this event, the kinetic energy and the potential energy are similar in magnitude and both increase throughout the propagation. Figure 13d shows the relative change of thermal [\(E_{\mathrm{thermal}}\), black solid line] and magnetic [\(E_{ \mathrm{m1}}\) and \(E_{\mathrm{m2}}\), blue solid and dashed lines] energies from the MW18 – 23 approach. The thermal energy shows a systematic decrease that reaches ≈ 70\(\%\) by 10 R. The magnetic energies decrease significantly throughout the propagation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lorenzo, L., Balmaceda, L., Cremades, H. et al. Comprehensive Characterization of the Dynamics of Two Coronal Mass Ejections in the Outer Corona. Sol Phys 299, 43 (2024). https://doi.org/10.1007/s11207-024-02290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02290-2

Keywords

Navigation