Skip to main content
Log in

Relation Between Coronal Hole Areas and Solar Wind Speeds Derived from Interplanetary Scintillation Measurements

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995 – 2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\) – \(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\) – \(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Coronal holes. Solar Phys. 26, 354. DOI .

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI .

    Article  ADS  Google Scholar 

  • Callahan, L., Wampler, S.: 2009, Robustness features of the SOLIS automated pipeline. In: Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series 411, 212.

    Google Scholar 

  • Fujiki, K., Kojima, M., Tokumaru, M., Ohmi, T., Yokobe, A., Hayashi, K., McComas, D.J., Elliott, H.A.: 2003, How did the solar wind structure change around the solar maximum? From interplanetary scintillation observations. Ann. Geophys. 21, 1257. DOI .

    Article  ADS  Google Scholar 

  • Fujiki, K., Tokumaru, M., Iju, T., Hakamada, K., Kojima, M.: 2015, Relationship between solar-wind speed and coronal magnetic-field properties. Solar Phys. 290, 2491. DOI .

    Article  ADS  Google Scholar 

  • Fujiki, K., Tokumaru, M., Hayashi, K., Hakamada, K.: 2016, Long-term trend of solar coronal hole distribution from 1975 to 2014. Astrophys. J. Lett. 827, L41. DOI .

    Article  ADS  Google Scholar 

  • Hakamada, K.: 1995, A simple method to compute spherical harmonic coefficients for the potential model of the coronal magnetic field. Solar Phys. 159, 89. DOI .

    Article  ADS  Google Scholar 

  • Hakamada, K., Kojima, M., Kakinuma, T.: 1991, Solar wind speed and He I (1083 nm) absorption line intensity. J. Geophys. Res. 96, 5397. DOI .

    Article  ADS  Google Scholar 

  • Hakamada, K., Kojima, M.: 1999, Solar wind speed and expansion rate of the coronal magnetic field during Carrington rotation 1909. Solar Phys. 187, 115. DOI .

    Article  ADS  Google Scholar 

  • Hakamada, K., Kojima, M., Tokumaru, M., Ohmi, T., Yokobe, A., Fujiki, K.: 2002, Solar wind speed and expansion rate of the coronal magnetic field in solar maximum and minimum phases. Solar Phys. 207, 173. DOI .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He ii 304 Å and He I 10830 Å spectrograms. Solar Phys. 54, 343. DOI .

    Article  ADS  Google Scholar 

  • Hayashi, K., Kojima, M., Tokumaru, M., Fujiki, K.: 2003, MHD tomography using interplanetary scintillation measurement. J. Geophys. Res. 108, 1102. DOI .

    Article  Google Scholar 

  • Harvey, J.W., Sheeley, N.R. Jr.: 1979, Coronal hole and solar magnetic fields. Space Sci. Rev. 23, 139. DOI .

    ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214. DOI .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet: 1978 – 1982. J. Geophys. Res. 88, 9910. DOI .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.L., Kojima, M., Yokobe, A.: 1998, Heliospheric tomography using interplanetary scintillation observations, 1. Combined Nagoya and Cambridge observations. J. Geophys. Res. 103, 12049. DOI .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Solar-Terr. Phys. 73, 1214. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Davis, J.M., Harvey, J.W.: 1983, Comparison of coronal holes observed in soft X-ray and He I 10830 Å spectroheliograms. Solar Phys. 87, 47. DOI .

    Article  ADS  Google Scholar 

  • Keller, C.U., Harvey, J.W., Henney, C.J.: 2008, New observations of the magnetic vector field across the solar disk. In: 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ASP Conference Series 384, 166.

    Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173. DOI .

    Article  ADS  Google Scholar 

  • Kojima, M., Tokumaru, M., Watanabe, H., Yokobe, A., Jackson, B.V., Hick, P.L.: 1998, Heliospheric tomography using interplanetary scintillation observations: 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1 – 1 AU. J. Geophys. Res. 103, 1981. DOI .

    Article  ADS  Google Scholar 

  • Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104, 16993. DOI .

    Article  ADS  Google Scholar 

  • Kojima, M., Tokumaru, M., Fujiki, K., Hayashi, K., Jackson, B.V.: 2007, IPS tomographic observations of 3D solar wind structure. Astron. Astrophys. Trans. 26, 467. DOI .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Zhao, X.P., Liu, Y., Riley, P., Arge, C.N., Russell, C.T., de Peter, I.: 2009, Effects of the weak polar fields of solar cycle 23: investigation using ONMI for the STEREO mission period. Solar Phys. 256, 345. DOI .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI .

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. DOI .

    Article  ADS  Google Scholar 

  • Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., Lepping, R.P., Linker, J.A., Mikic, Z., Steinberg, J.T., von Steiger, R., Wang, Y.-M., Wimmer-Schweingruber, R.F.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res. 103, 14587. DOI .

    Article  ADS  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303. DOI .

    Article  ADS  Google Scholar 

  • Pinto, R.F., Brun, A.S., Rouillard, A.P.: 2016, Flux-tube geometry and solar wind speed during an activity cycle. Astron. Astrophys. 592, A65. DOI .

    Article  ADS  Google Scholar 

  • Pneuman, G.W., Kopp, R.A.: 1971, Gas-magnetic field interactions in the solar corona. Solar Phys. 18, 258. DOI .

    Article  ADS  Google Scholar 

  • Reiss, M.A., Temmer, M., Veronig, A.M., Nikolic, L., Vennerstorm, S., Schöngassner, F., Hofmeister, S.: 2016, Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14, 495. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Arge, C.N.: 2015, On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13, 154. DOI .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793. DOI .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2015, Real-time solar wind prediction based on SDO/AIA coronal hole data. Solar Phys. 290, 1355. DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Liu, Y.: 2008, The global solar magnetic field through a full sunspot cycle: observations and model results. Solar Phys. 252, 19. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R., Mülhäuser, K.-H., Marsch, E., Rosenbauer, H.: 1981, Two states of the solar wind at the time of solar activity minimum, II. Radial gradients of plasma parameters in fast and slow streams. In: Solar Wind Four, Proceedings of the Conference Held in Burghausen, August 18 – September 1, 1978, 126.

    Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103. DOI .

    Article  ADS  Google Scholar 

  • Timothy, A.F., Krieger, A.S., Vaiana, G.S.: 1975, The structure and evolution of coronal holes. Solar Phys. 42, 135. DOI .

    Article  ADS  Google Scholar 

  • Tokumaru, M.: 2013, Three-dimensional exploration of the solar wind using observations of interplanetary scintillation. Proc. Japan Acad. Ser. B, Phys. Biol. Sci. 89, 67. DOI .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Hayashi, K.: 2009, Non-dipolar solar wind structure observed in the cycle \(23/24\) minimum. Geophys. Res. Lett. 36, L09101. DOI .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102. DOI .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Fujiki, K., Iju, T.: 2015, North–south asymmetry in global distribution of the solar wind speed during 1985 – 2013. J. Geophys. Res. 120, 3283. DOI .

    Article  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux tube expansion. Astrophys. J. 355, 726. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (A) (25247079). The IPS observations were conducted under the solar wind program of the Solar-Terrestrial Environment Laboratory (STEL), currently the Institute for Space-Earth Environmental Research (ISEE). This work uses SOLIS data obtained by the NSO Integrated Synoptic Program (NISP) managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The authors are grateful to the referee for providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetoshi Tokumaru.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokumaru, M., Satonaka, D., Fujiki, K. et al. Relation Between Coronal Hole Areas and Solar Wind Speeds Derived from Interplanetary Scintillation Measurements. Sol Phys 292, 41 (2017). https://doi.org/10.1007/s11207-017-1066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1066-7

Keywords

Navigation