Skip to main content
Log in

Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the relationship between the coronal hole (CH) characteristics on the Sun (area, position, and intensity levels) and the corresponding solar wind parameters (solar wind speed v, proton temperature T, proton density n, and magnetic field strength B) measured in situ at 1 AU with a 6-h time resolution. We developed a histogram-based intensity thresholding method to obtain fractional CH areas from SOHO/EIT 195 Å images. The algorithm was applied to 6-h cadence EIT 195 Å images for the year 2005, which were characterized by a low solar activity. In calculating well-defined peaks of the solar wind parameters corresponding to the peaks in CH area, we found that the solar wind speed v shows a high correlation with correlation coefficient cc=0.78, medium correlation for T and B with cc=0.41 and cc=0.41. No significant correlation was found with the proton density n. Applying an intensity-weighted CH area did not improve the relations, since the size and the mean intensity of the CH areas are not independent parameters but strongly correlated (cc=− 0.72). Comparison of the fractional CH areas derived from GOES/SXI and SOHO/EIT and the related solar wind predictions shows no systematic differences (cc=0.79).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abramenko, V., Yurchyshyn, V., Watanabe, H.: 2009, Parameters of the magnetic flux inside coronal holes. Solar Phys. 260, 43 – 57. doi: 10.1007/s11207-009-9433-7 .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Coronal holes. Solar Phys. 26, 354 – 365. doi: 10.1007/BF00165276 .

    Article  ADS  Google Scholar 

  • Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.F.: 2009, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361 – 371. doi: 10.1051/0004-6361/200811416 .

    Article  ADS  Google Scholar 

  • Cranmer, S.R. 2009, Coronal holes. Living Rev. Solar Phys. 6(3). http://solarphysics.livingreviews.org/Articles/lrsp-2009-3/ .

  • de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195 – 217. doi: 10.1007/s11207-010-9677-2 .

    Article  ADS  Google Scholar 

  • Del Zanna, G., Bromage, B.J.I.: 1999, The elephant’s trunk: spectroscopic diagnostics applied to SOHO/CDS observations of the August 1996 equatorial coronal hole. J. Geophys. Res. 104, 9753 – 9766. doi: 10.1029/1998JA900067 .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi: 10.1007/BF00733432 .

    Article  ADS  Google Scholar 

  • Delouille, V., Barra, V., Hochedez, J.: 2007, Segmentation of SoHO/EIT images using fuzzy clustering algorithms. In: AGU Fall Meeting, A1107.

    Google Scholar 

  • Detman, T., Smith, Z., Dryer, M., Fry, C.D., Arge, C.N., Pizzo, V.: 2006, A hybrid heliospheric modeling system: background solar wind. J. Geophys. Res. 111, A07102. doi: 10.1029/2005JA011430 .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1996, Physical nature of the low-speed solar wind. In: Habbal, S.R. (ed.) Robotic Exploration Close to the Sun: Scientific Basis, AIP Conf. Proc. 385, American Institute of Physics, Woodbury, 17 – 24.

    Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21 – 52. doi: 10.1023/A:1005291711900 .

    Article  ADS  Google Scholar 

  • Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar Activity, ASP Conf. Ser. 346, 261 – 268.

    Google Scholar 

  • Hill, S.M., Pizzo, V.J., Balch, C.C., Biesecker, D.A., Bornmann, P., Hildner, E., Lewis, L.D., Grubb, R.N., Husler, M.P., Prendergast, K., Vickroy, J., Greer, S., Defoor, T., Wilkinson, D.C., Hooker, R., Mulligan, P., Chipman, E., Bysal, H., Douglas, J.P., Reynolds, R., Davis, J.M., Wallace, K.S., Russell, K., Freestone, K., Bagdigian, D., Page, T., Kerns, S., Hoffman, R., Cauffman, S.A., Davis, M.A., Studer, R., Berthiaume, F.E., Saha, T.T., Berthiume, G.D., Farthing, H., Zimmermann, F.: 2005, The NOAA GOES-12 Solar X-ray Imager (SXI) 1. Instrument, operations, and data. Solar Phys. 226, 255 – 281. doi: 10.1007/s11207-005-7416-x .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1972, Composition and dynamics of the solar wind plasma. In: Dyer, E.R., Roederer, J.G., Hundhausen, A.J. (eds.) The Interplanetary Medium: Part II of Solar-Terrestrial Physics, D. Reidel, Dordrecht, 1 – 31.

    Google Scholar 

  • Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99 – 112. doi: 10.1007/s11207-009-9369-y .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505 – 525. doi: 10.1007/BF00150828 .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87 – 100. doi: 10.1007/s11207-009-9357-2 .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. doi: 10.1007/s11207-011-9776-8 .

    Article  ADS  Google Scholar 

  • Luo, B., Zhong, Q., Liu, S., Gong, J.: 2008, A new forecasting index for solar wind velocity based on EIT 284 Å observations. Solar Phys. 250, 159 – 170. doi: 10.1007/s11207-008-9198-4 .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P.L., Delapp, D.M., Feldman, W.C., Gosling, J.T., Santiago, E., Skoug, R.M., Tokar, R.L., Riley, P., Phillips, J.L., Griffee, J.W.: 1998, An unusual coronal mass ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) results from the Advanced Composition Explorer. Geophys. Res. Lett. 25, 4289 – 4292. doi: 10.1029/1998GL900174 .

    Article  ADS  Google Scholar 

  • Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511 – 520. doi: 10.1086/151653 .

    Article  ADS  Google Scholar 

  • Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701 – 3709. doi: 10.1029/JA079i025p03701 .

    Article  ADS  Google Scholar 

  • Newkirk, J.G.: 1967, Structure of the solar corona. Annu. Rev. Astron. Astrophys. 5, 213 – 262. doi: 10.1146/annurev.aa.05.090167.001241 .

    Article  ADS  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, G.E.C., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303 – 322. doi: 10.1007/BF00149859 .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D., Livshits, I.M., Asgarov, A.B.: 2009, Contrast of coronal holes and parameters of associated solar wind streams. Solar Phys. 260, 191 – 206. doi: 10.1007/s11207-009-9435-5 .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO Heliospheric Imagers. Solar Phys. 259, 297 – 309. doi: 10.1007/s11207-009-9449-z .

    Article  ADS  Google Scholar 

  • Pizzo, V.J., Hill, S.M., Balch, C.C., Biesecker, D.A., Bornmann, P., Hildner, E., Grubb, R.N., Chipman, E.G., Davis, J.M., Wallace, K.S., Russell, K., Cauffman, S.A., Saha, T.T., Berthiume, G.D.: 2005, The NOAA GOES-12 Solar X-ray Imager (SXI) 2. Performance. Solar Phys. 226, 283 – 315. doi: 10.1007/s11207-005-7417-9 .

    Article  ADS  Google Scholar 

  • Reeves, E.M., Parkinson, W.H.: 1970, An atlas of extreme-ultraviolet spectroheliograms from OSO-IV. Astrophys. J. Suppl. 21, 1 – 30. doi: 10.1086/190217 .

    Article  ADS  Google Scholar 

  • Robbins, S., Henney, C.J., Harvey, J.W.: 2006, Solar wind forecasting with coronal holes. Solar Phys. 233, 265 – 276. doi: 10.1007/s11207-006-0064-y .

    Article  ADS  Google Scholar 

  • Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425 – 439. doi: 10.1007/s11207-007-9075-6 .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE Magnetic Fields Experiment. Space Sci. Rev. 86, 613 – 632. doi: 10.1023/A:1005092216668 .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1 – 22. doi: 10.1023/A:1005082526237 .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371 – 383. doi: 10.1007/s11207-007-0336-1 .

    Article  ADS  Google Scholar 

  • Tousey, R., Sandlin, G.D., Purcell, J.D.: 1968, On Some Aspects of XUV Spectroheliograms. In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 411 – 419.

    Chapter  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717 – 21734. doi: 10.1029/95JA01476 .

    Article  ADS  Google Scholar 

  • Vaiana, G.S.: 1976, The X-ray corona from SKYLAB. Phil. Trans. Roy. Soc. London A 281, 365 – 374. doi: 10.1098/rsta.1976.0034 .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20. doi: 10.1051/0004-6361/201014617 .

    Article  ADS  Google Scholar 

  • Veselovsky, I.S., Persiantsev, I.G., Ryazanov, A.Y., Shugai, Y.S.: 2006, One-parameter representation of the daily averaged solar-wind velocity. Solar Syst. Res. 40, 427 – 431. doi: 10.1134/S0038094606050078 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007a, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315 – 330. doi: 10.1007/s11207-007-0285-8 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007b, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331 – 346. doi: 10.1007/s11207-007-0311-x .

    Article  ADS  Google Scholar 

  • Wall, J.V., Jenkins, C.R.: 2003, In: Practical Statistics for Astronomers, Cambridge University Press, Cambridge, 54 – 74.

    Chapter  Google Scholar 

  • Wilcox, J.M.: 1968, The interplanetary magnetic field. Solar origin and terrestrial effects. Space Sci. Rev. 8, 258 – 328. doi: 10.1007/BF00227565 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Data supplied were courtesy of the SOHO/MDI and SOHO/EIT consortia. SOHO is a project of international cooperation between ESA and NASA. Full-disk X-ray images are supplied by courtesy of the Solar X-ray Imager (SXI) team. We thank the ACE SWEPAM and MAG instrument teams and the ACE Science Center for providing the ACE data. The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007 – 2013) under grant agreements No. 218816 (SOTERIA) and FP7 No. 263252 (COMESEP). M.T. gratefully acknowledges the Austrian Science Fund (FWF): FWF V195-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotter, T., Veronig, A.M., Temmer, M. et al. Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU. Sol Phys 281, 793–813 (2012). https://doi.org/10.1007/s11207-012-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0101-y

Keywords

Navigation