Skip to main content
Log in

The Solar Wind at 1 AU During the Declining Phase of Solar Cycle 23: Comparison of 3D Numerical Model Results with Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present results of solar-wind parameters generated by 3D MHD models. The ENLIL inner-heliosphere solar-wind model together with the MAS or Wang – Sheeley – Arge (WSA) coronal models, describe the steady solar-wind stream structure and its origins in the solar corona. The MAS/ENLIL and WSA/ENLIL models have been tuned to provide a simulation of plasma moments as well as interplanetary magnetic-field magnitude and polarity in the absence of disturbances from coronal transients. To investigate how well the models describe the ambient solar wind structure from the Sun out to 1 AU, the model results are compared to solar-wind measurements from the ACE spacecraft. We find that there is an overall agreement between the observations and the model results for the general large-scale solar-wind structures and trends, such as the timing of the high-density structures and the low- and high-speed winds, as well as the magnetic sector structures. The time period of our study is the declining phase of Solar Cycle 23 when the solar activity involves well-defined stream structure, which is ideal for testing a quasi-steady-state solar-wind model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105(A10). doi:10.1029/2001JA000503.

  • Arge, C.N., Hildner, E., Pizzo, V.J., Harvey, J.W.: 2002, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107(A15), 10 465 – 10 480.

    Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the 12th May 1997 CME. J. Atmos. Solar Terr. Phys. 66, 1295 – 1309.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ness, N.F., Mariani, F., Bavassano, B., Villante, U., Rosenbauer, H., Schwenn, R., Harvey, J.: 1978, Magnetic fields and flows between 1 and 0.3 AU during the primary mission of HELIOS 1. J. Geophys. Res. 83, 5167 – 5174.

    Article  ADS  Google Scholar 

  • Cohen, O., Sokolov, I.V., Roussev, I.I., et al.: 2007, A semiempirical magnetohydrodynamical model of the solar wind. Astrophys. J. 654, L163 – L166.

    Article  ADS  Google Scholar 

  • Cohen, O., Sokolov, I.V., Roussev, I.I., Gombosi, T.: 2008, Validation of a synoptic solar wind model. J. Geophys. Res. 113, A03104. doi:10.1029/2007JA012797.

    Article  Google Scholar 

  • Colin, L.: 1980, The Pioneer Venus program. J. Geophys. Res. 85, 7575 – 7598.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21 – 52.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bane, S.J., Feldman, W.C.: 1978, Solar wind stream interfaces. J. Geophys. Res. 83, 1401 – 1412.

    Article  ADS  Google Scholar 

  • Henney, C.J., Keller, C.U., Harvey, J.W.: 2006, SOLIS-VSM solar vector magnetograms. In: Casini, R., Lites, B.W. (eds.) Solar Polarization 4 CS-358, Astron. Soc. Pac., San Francisco, 92 – 95.

    Google Scholar 

  • Howard, R.: 1976, The Mount Wilson solar magnetograph – Scanning and data system. Solar Phys. 48, 411 – 416.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Scherrer, P.H.: 1985, An atlas of photospheric magnetic field observations and computed heliospheric magnetic fields from the John M. Wilcox Solar Observatory at Standford 1976 – 1984. Rep. CSSA-ASTRO-85-11, Stanford University, Stanford, California.

  • Kaiser, M.: 2005, The STEREO Mission: an overview. Adv. Space Res. 36, 1483 – 1488.

    Article  ADS  Google Scholar 

  • Kunow, H., Witte, M., Wibberenz, G., Hempe, H., Mueller-Mellin, R., Green, G., Iwers, B., Fuckner, J.: 1977, Cosmic ray measurements on board HELIOS 1 from December 1974 to September 1975 Quiet time spectra, radial gradients, and solar events. J. Geophys. 42, 615 – 631.

    Google Scholar 

  • Levine, R.H., Altschuler, M.D., Harvey, J.W.: 1977, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 1061 – 1065.

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikic, Z., 1997, Extending coronal models to Earth orbit. In: Crooker, N., Joselyn, J., Feynmann, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington, 269 – 277.

    Google Scholar 

  • Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107. doi:10.1029/2001JA007550.

  • Luhmann, J.G., Solomon, S.C., Linker, J.A., Lyon, J.G., Mikic, Z., Odstrcil, D., Wang, W., Wiltberger, M.: 2004, Coupled model simulation of a Sun-to-Earth space weather event. J. Atmos. Solar Terr. Phys. 66, 1243 – 1256.

    Article  ADS  Google Scholar 

  • Mariani, F., Ness, N.F., Burlaga, L.F., Bavassano, B., Villante, U.: 1978, The large-scale structure of the interplanetary magnetic field between 1 and 0.3 AU during the primary mission of HELIOS 1. J. Geophys. Res. 83, 5161 – 5166.

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563 – 612.

    Article  ADS  Google Scholar 

  • McGregor, S.L., Hughes, W., Arge, C.N., Odstrcil, D.: 2006, Predicting solar wind structures in the inner heliosphere. In: Fall Meet. Suppl., Abstract SH21B-02, Eos Trans. AGU 87(52).

  • Mikic, Z., Linker, J.A.: 1995, The large-scale structure of the solar corona and inner heliosphere. In: Winterhalter, D. et al. (eds.) Solar Wind Eight, AIP Conf. Proc. 382, 104.

  • Odstrcil, D.: 2003, Modeling 3D solar wind structure. Adv. Space Res. 32, 497 – 506.

    Article  ADS  Google Scholar 

  • Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109. doi:10.1029/2003JA010135.

  • Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary CME in evolving solar wind structures. J. Geophys. Res. 110. doi:10.1029/2004JA010745.

  • Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2007, Metric for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8-years of L1 observations. Space Weather 6, S08001. doi:10.1029/2007SW000380.

    Article  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 – 676.

    Article  ADS  Google Scholar 

  • Pizzo, V.J.: 1991, The evolution of corotating stream fronts near the ecliptic plane in the inner solar system. II – Three-dimensional tilted-dipole fronts. J. Geophys. Res. 96, 5405 – 5420.

    Article  ADS  Google Scholar 

  • Pizzo, V.J.: 1994, Global, quasi-steady dynamics of the distant solar wind 2: Deformation of the heliospheric current sheet. J. Geophys. Res. 99, 4185 – 4191.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikic, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15 889 – 15 901.

    ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikic, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510 – 1516.

    Article  ADS  Google Scholar 

  • Roussev, I.I., Forbes, T.G., Gombosi, T.I., Sokolov, I.V., DeZeeuw, D.L., Birn, J.: 2003, A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium. Astrophys. J. 588, L45 – L48.

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232 – 245.

    Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455.

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613 – 632.

    Article  ADS  Google Scholar 

  • Solomon, S.C., McNutt, R.L., Jr., Gold, R.E., et al.: 2001, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445 – 1465.

    Article  ADS  Google Scholar 

  • Ulrich, R.K., Evans, S., Boyden, J.E., Webster, L.: 2002, Mount Wilson synoptic magnetic fields: improved instrumentation, calibration, and analysis applied to the 14 July 2000 flare and to the evolution of the dipole field. Astrophys. J. Suppl. 139, 259 – 279.

    Article  ADS  Google Scholar 

  • Usmanov, A.V.: 1993a, Interplanetary magnetic field structure and solar wind parameters as inferred from solar magnetic field observations and by using a numerical 2D MHD model. Solar Phys. 143, 345 – 363.

    Article  ADS  Google Scholar 

  • Usmanov, A.V.: 1993b, A global numerical 3D MHD model of the solar wind. Solar Phys. 146, 377 – 396.

    Article  ADS  Google Scholar 

  • Usmanov, A.V., Goldstein, M.L.: 2003, A tilted-dipole MHD model of the solar corona and solar wind. J. Geophys. Res. 108. doi:10.1029/2002JA009777.

  • Usmanov, A.V., Goldstein, M.L., Besser, B.P., Fritzer, J.M.: 2000, A global MHD solar wind model with WKB Alfvén waves: comparison with Ulysses data. J. Geophys. Res. 105, 12 675 – 12 696.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1990a, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 – 732.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1990b, Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams. Astrophys. J. 365, 372 – 386.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310 – 319.

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107 SSH 13-1. doi:10.1029/2001JA009143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.O., Luhmann, J.G., Odstrcil, D. et al. The Solar Wind at 1 AU During the Declining Phase of Solar Cycle 23: Comparison of 3D Numerical Model Results with Observations. Sol Phys 254, 155–183 (2009). https://doi.org/10.1007/s11207-008-9280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-008-9280-y

Keywords

Navigation