Skip to main content

Advertisement

Log in

Using Drama to Promote Argumentation in Science Education

The Case of “Should’ve”

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The purpose of this study was to use drama as a springboard for promoting argumentation among 91 first-semester undergraduate medical students (56 females and 35 males, 16–30 years old) in Colombia during a complete teaching–learning sequence (TLS) supervised by the same teacher. The drama used was the play Should’ve, written by Nobel laureate Roald Hoffmann. The data was derived from students’ written responses, audio and video recordings, and written field notes. This investigation provides evidence that an approach combining drama and argumentation could increase students’ awareness of the relevance of ethics in science as one of the features of science (FOS). The findings show that the play Should’ve can be useful for promoting students’ argumentation and is also appropriate for medical students. Future studies could include other science disciplines (e.g., astronomy, biology, chemistry, earth science, ecology, physics); students of other ages; and other plays and experiments in other parts of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahams, I., & Braund, M. (Eds.). (2012). Performing science: teaching chemistry, physics and biology through drama. London: Continuum.

    Google Scholar 

  • Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1443–1472). Dordrecht: Springer.

    Google Scholar 

  • Alban Metcalfe, R. J., Abbott, S., Bray, P., Exley, J., & Wisnia, D. (1984). Teaching science through drama: an empirical investigation. Research in Science & Technological Education, 2(1), 77–81.

    Article  Google Scholar 

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8–9), 805–827.

    Article  Google Scholar 

  • Amato, I. (2007). Experiments of concern. Well-intentioned research, in the wrong hands, can become dangerous. Chemical & Engineering News, 85(31), 51–55.

    Article  Google Scholar 

  • Andrew, J., & Robottom, I. (2001). Science and ethics: some issues for education. Science Education, 85(6), 769–780.

    Article  Google Scholar 

  • Aragón, M. M. (2007). Las ciencias experimentales y la enseñanza bilingüe. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 4(1), 152–175.

    Google Scholar 

  • Archila, P. A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361–375.

    Google Scholar 

  • Archila, P. A. (2013). La Argumentación y sus aportes a la enseñanza bilingüe de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3), 406–423.

    Google Scholar 

  • Archila, P. A. (2014a). Comment enseigner et apprendre chimie par l’argumentation? Saarbrücken: Éditions Universitaires Européennes.

    Google Scholar 

  • Archila, P. A. (2014b). Are science teachers prepared to promote argumentation? A case study with pre–service teachers in Bogotá city. Asia–Pacific Forum on Science Learning and Teaching, 15(1), 1–21.

    Google Scholar 

  • Archila, P. A. (2014c). Argumentación y educación en ciencias: Vínculos con la alfabetización y la cultura científica. In A. Molina (Ed.), Enseñanza de las ciencias y cultura: Múltiples aproximaciones (pp. 103–121). Bogotá: Ediciones Universidad Distrital Francisco José de Caldas.

    Google Scholar 

  • Archila, P. A. (2015a). Using history and philosophy of science to promote students’ argumentation. A teaching–learning sequence based on the discovery of oxygen. Science & Education, 24(9), 1201–1226.

    Article  Google Scholar 

  • Archila, P. A. (2015b). Evaluating evidence from a historical chemical controversy: a study in French high school. Asia-Pacific Forum on Science Learning and Teaching, 16(2), 1–22.

    Google Scholar 

  • Archila, P. A. (2015c). Uso de conectores y vocabulario espontaneo en la argumentación escrita: Aportes a la alfabetización científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(3), 402–418.

    Google Scholar 

  • Archila, P. A. (2016). ¿Cómo formar profesores de ciencias que promuevan la argumentación?: Lo que sugieren avances actuales de investigación. Revista Currículum y Formación del Profesorado, 20(3), 339–432.

    Google Scholar 

  • Archila, P. A., Luna-Calderón, P., & Mesa-Piñeros, M. (2017). El empleo espontáneo de conectores y vocabulario relacionado con las ciencias: Implicaciones en la argumentación escrita. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(1), 3–23.

    Google Scholar 

  • Bailey, S., & Watson, R. (1998). Establishing basic ecological understanding in younger pupils: a pilot evaluation of a strategy based on drama/role play. International Journal of Science Education, 20(2), 139–152.

    Article  Google Scholar 

  • Baird, C. (1997). ‘GULP’ an imaginatively different approach to learning about water, through science drama. Education in Science, 171, 30–31.

    Google Scholar 

  • Baker, M. J. (2002). Argumentative interactions, discursive operations and learning to model in science. In P. Brna, M. Baker, K. Stenning, & A. Tiberghien (Eds.), The role of communication in learning to model (pp. 303–324). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Baker, M. J. (2009). Argumentative interactions and the social construction of knowledge. In N. Muller Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 127–144). New York: Springer.

    Chapter  Google Scholar 

  • Ballenger, C. (1997). Social identities, moral narratives, scientific argumentation: science talk in a bilingual classroom. Language and Education, 11(1), 1–14.

    Article  Google Scholar 

  • Barrett, S. E., & Nieswandt, M. (2010). Teaching about ethics through socioscientific issues in physics and chemistry: teacher candidates’ beliefs. Journal of Research in Science Teaching, 47(4), 380–401.

    Article  Google Scholar 

  • Bazzul, J. (2015). Tracing “ethical subjectivities” in science education: how biology textbooks can frame ethico-political choices for students. Research in Science Education, 45(1), 23–40.

    Article  Google Scholar 

  • Bazzul, J. (2016). Ethics and science education: how subjectivity matters. New York: Springer.

    Google Scholar 

  • Begoray, D. L., & Stinner, A. (2005). Representing science through historical drama. Science & Education, 14(3–5), 457–471.

    Article  Google Scholar 

  • Berland, L. K., & Hammer, D. (2012). Students’ framings and their participation in scientific argumentation. In M. S. Khine (Ed.), Perspectives on scientific argumentation: theory, practice and research (pp. 73–93). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Boujaoude, S., Sowwan, S., & Abd-El-Khalick, F. (2005). The effect of using drama in science teaching on students’ conceptions of the nature of science. In K. Boersma, M. Goedhart, O. De Jong, & H. Eijkelholf (Eds.), Research and the quality of science education (pp. 259–267). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Braund, M. (1999). Electric drama to improve understanding in science. School Science Review, 81(294), 35–42.

    Google Scholar 

  • Braund, M. (2015). Drama and learning science: an empty space? British Educational Research Journal, 41(1), 102–121.

    Article  Google Scholar 

  • Braund, M., Ekron, C., & Moodley, T. (2013). Critical episodes in student teachers’ science lessons using drama in grades 6 and 7. African Journal of Research in Mathematics, Science and Technology Education, 17(1–2), 4–13.

    Article  Google Scholar 

  • Braund, M., Moodley, T., Ekron, C., & Ahmed, Z. (2015). Crossing the border: science student teachers using role-play in grade 7. African Journal of Research in Mathematics, Science and Technology Education, 19(2), 107–117.

    Article  Google Scholar 

  • Brouwer, W. (1990). The scientist in society: perspectives from drama. Bulletin of Science, Technology & Society, 10(5–6), 259–296.

    Google Scholar 

  • Brzozowski, J. (2016). Science fiction as a springboard for science education. Science & Education, 25(1), 203–206.

    Article  Google Scholar 

  • Buty, C., & Plantin, C. (Eds.). (2008a). Argumenter en classe de sciences. Du débat à l’apprentissage. Paris: INRP.

    Google Scholar 

  • Buty, C., & Plantin, C. (2008b). L’argumentation à l’épreuve de l’enseignement des sciences et vice–versa. In C. Buty & C. Plantin (Eds.), Argumenter en classe de sciences. Du débat à l’apprentissage (pp. 17–42). Paris: INRP.

    Google Scholar 

  • Cardellini, L. (2007). Roald Hoffmann’s Should’ve: ethics and science on stage. Chemistry International, 29(3), 4–7.

    Google Scholar 

  • Cavagnetto, A. (2010). Argument to foster scientific literacy: a review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336–371.

    Article  Google Scholar 

  • Cavagnetto, A., & Hand, B. (2012). The importance of embedding argument within science classrooms. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 39–53). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Chin, C., & Osborne, J. (2010). Students’ questions and discursive interaction: their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883–908.

    Article  Google Scholar 

  • Choi, K., & Cho, H. (2002). Effects of teaching ethical issues on Korean school students’ attitudes toward science. Journal of Biological Education, 37(1), 26–30.

    Article  Google Scholar 

  • Cokadar, H., & Yilmaz, G. C. (2010). Teaching ecosystems and matter cycles with creative drama activities. Journal of Science Education and Technology, 19(1), 180–189.

    Article  Google Scholar 

  • Copland, P. (2003). Science and ethics must not be separated. Nature, 425, 121.

    Article  Google Scholar 

  • Cottrell, J. (1987). Creative drama ın the classroom. Illinois: National Textbook Company.

    Google Scholar 

  • Courtney, R. (1990). Drama and intelligence: a cognitive theory. Montreal: McGill-Queen’s University Press.

    Google Scholar 

  • Davis, S. (2015). Drama, education and curriculum: alive, kicking and counting. Research in Drama Education, 20(3), 327–330.

    Article  Google Scholar 

  • Dawson, E., Hill, A., Barlow, J., & Weitkamp, E. (2009). Genetic testing in a drama and discussion workshop: exploring knowledge construction. Research in Drama Education, 14(3), 361–390.

    Article  Google Scholar 

  • de Hosson, C. (2011). Una controversia histórica al servicio de una situación de aprendizaje: Una reconstrucción didáctica basada en diálogo sobre los dos máximos sistemas del mundo de Galileo. Enseñanza de las Ciencias, 29(1), 115–126.

  • de Hosson, C., & Kaminski, W. (2007). Historical controversy as an educational tool: evaluating elements of a teaching–learning sequence conducted with the text “dialogue on the ways that vision operates”. International Journal of Science Education, 29(5), 617–642.

  • Dorion, K. R. (2009). Science through drama: a multiple case exploration of the characteristics of drama activities used in secondary science lessons. International Journal of Science Education, 31(16), 2247–2270.

    Article  Google Scholar 

  • Douaire, J. (Ed.). (2004). Argumentation et disciplines scolaires. Paris: INRP.

    Google Scholar 

  • Duatepe-Paksu, A., & Ubuz, B. (2009). Effects of drama-based geometry instruction on student achievement, attitudes, and thinking levels. The Journal of Educational Research, 102(4), 272–286.

    Article  Google Scholar 

  • El-Hani, C. N., & Mortimer, E. F. (2007). Multicultural education, pragmatism, and the goals of science teaching. Cultural Studies of Science Education, 2(3), 657–702.

    Article  Google Scholar 

  • Emerson, R. M., Fretz, R. I., & Shaw, L. L. (Eds.). (2011). Writing ethnographic field notes (2nd ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  • Erduran, S., & Dagher, R. F. (2014). Reconceptualizing the nature of science for science education. Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2007). Argumentation in science education: perspectives from classroom–based research. New York: Springer.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2012). Research on argumentation in science education in Europe. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe: retrospective and prospective (pp. 253–289). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Erduran, S., & Pabuccu, A. (2012). Bonding chemistry and argument: promoting teaching and learning of argumentation through chemistry stories. Bristol: University of Bristol.

    Google Scholar 

  • Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: a journal content analysis from 1998–2014. International Journal of STEM Education, 2(5), 1–12.

    Google Scholar 

  • Eskin, H., & Ogan-Bekiroglu, F. (2013). Argumentation as a strategy for conceptual learning of dynamics. Research in Science Education, 43(5), 1939–1956.

    Article  Google Scholar 

  • Fels, L., & Meyer, K. (1997). On the edge of chaos: co-evolving worlds of drama and science. Teaching Education, 9(1), 75–81.

    Article  Google Scholar 

  • Fensham, P. J. (2004). Defining an identity. the evolution of science education as a field of research. Dordrecht: Springer.

    Book  Google Scholar 

  • Fensham, P. J. (2015). Connoisseurs of science: a next goal for science education? In D. Corrigan, C. Buntting, J. Dillon, A. Jones, & R. Gunstone (Eds.), The future in learning science: what’s in it for the learner? (pp. 35–59). Cham: Springer.

    Chapter  Google Scholar 

  • Fillon, P., Orange, C., Peterfalvi, B., Rebière, M., & Schneeberger, P. (2004). Argumentation et construction de connaissances en sciences. In J. Douaire (Ed.), Argumentation et disciplines scolaires (pp. 203–247). Paris: INRP.

    Google Scholar 

  • Fraser, B. J., Tobin, K. G., & McRobbie, C. J. (Eds.). (2012). Second international handbook of science education. Dordrecht: Springer.

    Google Scholar 

  • Frazer, M. J., & Kornhauser, A. (1986). Ethics and social responsibility in science education. Oxford: Pergamon Press.

    Book  Google Scholar 

  • Fung, D., & Lui, W.-M. (2016). Individual to collaborative: guided group work and the role of teachers in junior secondary science classrooms. International Journal of Science Education. doi:10.1080/09500693.2016.1177777.

  • Geelan, D. (2013). Teacher explanation of physics concepts: a video study. Research in Science Education, 43(5), 1751–1762.

    Article  Google Scholar 

  • Gunstone, R. (Ed.). (2015). Encyclopedia of science education. Dordrecht: Springer.

    Google Scholar 

  • Hart, P. (2015). Environmental education and science education. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 384–390). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Heathcote, D., & Bolton, G. (1995). Drama for learning. Portmouth: Heinemann.

    Google Scholar 

  • Hendrix, R., Eick, C., & Shannon, D. (2012). The integration of creative drama in an inquiry-based elementary program: the effect on student attitude and conceptual learning. Journal of Science Teacher Education, 23(7), 823–846.

    Article  Google Scholar 

  • Hoffmann, R. (2006). Should’ve. {Debió ser}(M. Delgado, G. Diaz de Delgado, D. Delgado Diaz Trans.). Estado Mérida: Consejo de Publicaciones ULA.

  • Hoffmann, R. (2011). Debió Ser. {Should’ve} (Translated into Spanish by M. Delgado, G. Diaz de Delgado, D. Delgado Diaz Trans.). Estado Mérida: Consejo de Publicaciones ULA.

  • Jho, H., Yoon, H.-G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio–scientific issues: the case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131–1151.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2014). Determinism and under determination in genetics: implications for students’ engagement in argumentation and epistemic practices. Science & Education, 23(2), 465–484.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39(3), 331–347.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jorba, J., Gómez, I., & Prat, A. (2000). Uso de la lengua en situación de enseñanza aprendizaje desde las áreas curriculares. Madrid: Síntesis.

    Google Scholar 

  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993–1009.

    Article  Google Scholar 

  • Kamen, M. (1991). Use of creative drama to evaluate elementary school students’ understanding of science concepts. In G. Kulm & S. M. Malcom (Eds.), Science assessment in the service of reform (pp. 338–341). Washington, D.C.: American Association for the Advancement of Science.

    Google Scholar 

  • Kase-Polisini, J., & Spector, B. (1992). Improvised drama: a tool for teaching science. Youth Theatre Journal, 7(1), 15–19.

    Google Scholar 

  • Kelly, G., Regev, J., & Prothero, W. (2007). Analysis of lines of reasoning in written argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 137–158). New York: Springer.

    Chapter  Google Scholar 

  • Kermen, I., & Méheut, M. (2009). Different models used to interpret chemical changes: analysis of a curriculum and its impact on French students’ reasoning. Chemistry Education Research and Practice, 10(1), 24–34.

    Article  Google Scholar 

  • Khine, M. S. (Ed.). (2012). Perspectives on scientific argumentation: theory, practice and research. Dordrecht: Springer.

    Google Scholar 

  • Khishfe, R. (2012a). Relationship between nature of science understandings and argumentation skills: a role for counterargument and contextual factors. Journal of Research in Science Teaching, 49(4), 489–514.

    Article  Google Scholar 

  • Khishfe, R. (2012b). Nature of science and decision-making. International Journal of Science Education, 34(1), 67–100.

    Article  Google Scholar 

  • Konstantinidou, A., & Macagno, F. (2013). Understanding students’ reasoning: argumentation schemes as an interpretation method in science education. Science & Education, 22(5), 1069–1087.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kuhn, D. (2005). Education for thinking. Cambridge: Harvard University Press.

    Google Scholar 

  • Kuhn, D. (2010a). Teaching and learning science as argument. Science Education, 94(5), 810–824.

    Article  Google Scholar 

  • Kuhn, D. (2010b). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd ed., pp. 497–523). Oxford: Blackwell.

  • Le Roi, J. M. (1998). It’s easy to start your own science drama group. How to turn science into drama! Hobart: JeM Books.

    Google Scholar 

  • Lederman, R. (1990). Pretexts for ethnography: On reading fieldnotes. In R. Sanjek (Ed.), Fieldnotes (pp. 71–91). Ithaca: Cornell University Press.

    Google Scholar 

  • Lederman, N. G., & Abell, S. K. (Eds.). (2014). Handbook of research on science education: volume II. New York: Routledge.

    Google Scholar 

  • Lee, M. H., Wu, Y. T., & Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: a content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.

    Article  Google Scholar 

  • Lerman, Z. M., & Morton, D. (2009). Using the arts and computer animation to make chemistry accessible to all in the twenty-first century. In M. Gupta-Bhowon, S. Jhaumeer-Laulloo, H. Li Kam Wah, & P. Ramasami (Eds.), Chemistry education in the ICT age (pp. 31–39). Dordrecht: Springer.

    Chapter  Google Scholar 

  • de Lima Tavares, M., Jiménez-Aleixandre, M. P., & Mortimer, E. F. (2010). Articulation of conceptual knowledge and argumentation practices by high school students in evolution problems. Science & Education, 19(6–8), 573–598.

    Article  Google Scholar 

  • Lin, Y.-R., & Hung, J.-F. (2016). The analysis and reconciliation of students’ rebuttals in argumentation activities. International Journal of Science Education. doi:10.1080/09500693.2015.1134848.

  • Lin, T.-C., Lin, T.-J., & Tsai, C.-C. (2014). Research trends in science education from 2008 to 2012: a systematic content analysis of publications in selected journals. International Journal of Science Education, 36(8), 1346–1372.

    Article  Google Scholar 

  • Linfield, R. S. (1996). Can scientific understanding be assessed through drama? Primary Science Review, 45, 4–5.

    Google Scholar 

  • Littledyke, M. (2004). Drama and science. Primary Science Review, 84, 14–17.

    Google Scholar 

  • Loving, C. C., Lowy, S. W., & Martin, C. (2003). Recognizing and solving ethical dilemmas in diverse science classrooms. In D. L. Zeidler (Ed.), The role of moral reasoning in socioscientific issues and discourse in science education (pp. 183–194). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Macagno, F., & Konstantinidou, A. (2013). What students’ arguments can tell us: using argumentation schemes in science education. Argumentation, 27(3), 225–243.

    Article  Google Scholar 

  • Maloney, J. (2007). Children’s roles and use of evidence in science: an analysis of decision-making in small groups. British Educational Research Journal, 33(3), 371–401.

    Article  Google Scholar 

  • Mansour, N., Wegerif, R., Skinner, N., Postlethwaite, K., & Hetherington, L. (2016). Investigating and promoting trainee science teachers’ conceptual change of the nature of science with digital dialogue games ‘InterLoc’. Research in Science Education. doi:10.1007/s11165-015-9475-9.

  • Martin, A. M., & Hand, B. (2009). Factors affecting the implementation of argument in the elementary science classroom. A longitudinal case study. Research in Science Education, 39(1), 17–38.

    Article  Google Scholar 

  • Matthews, M. R. (2012). Changing the focus: from nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in nature of science research (pp. 3–26). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mavrou, K., Douglas, G., & Lewis, A. (2007). The use of Transana as a video analysis tool in researching computer-based collaborative learning in inclusive classrooms in Cyprus. International Journal of Research & Method in Education, 30(2), 163–178.

    Article  Google Scholar 

  • McCullough, M. (2012). Bringing drama into medical education. The Lancet, 378(9815), 512–513.

    Article  Google Scholar 

  • McGregor, D., & Precious, W. (2010). Applying dramatic science to develop process skills. Science and Children, 48, 56–59.

    Google Scholar 

  • McGregor, D., Anderson, D., Baskerville, D., & Gain, P. (2013). How does drama support learning about the nature of science: contrasting narratives from the UK and NZ. In C. P. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), Proceedings of the ESERA 2013 conference: science education research for evidence-based teaching and coherence in learning (pp. 1005–1016). Nicosia: Cyprus.

    Google Scholar 

  • McSharry, G., & Jones, S. (2000). Role-play in science teaching and learning. School Science Review, 82(298), 73–82.

    Google Scholar 

  • Muller Mirza, N., & Buty, C. (Eds.). (2015). L’argumentation dans les contextes de l’éducation. Bern: Peter Lang.

    Google Scholar 

  • Muller Mirza, N., & Perret-Clermont, A. N. (Eds.). (2009). Argumentation and education: theoretical foundations and practices. New York: Springer.

    Google Scholar 

  • Muller Mirza, N., Perret-Clermont, A. N., Tartas, V., & Iannaccone, A. (2009). Psychosocial processes in argumentation. In N. Muller Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: theoretical foundations and practices (pp. 67–90). New York: Springer.

    Chapter  Google Scholar 

  • National Academy of Sciences (NAS). (2014). Roald Hoffmann’s Should’ve: a staged reading in collaboration with the studio theatre. Retrieved October 29, 2014, from: http://www.cpnas.org/events/shouldve-a-staged-reading.html.

  • Nichols, K., Gillies, R., & Hedberg, J. (2015). Argumentation-based collaborative inquiry in science through representational work: impact on primary students’ representational fluency. Research in Science Education. doi:10.1007/s11165-014-9456-4.

  • Nielsen, J. A. (2013). Dialectical features of students’ argumentation: a critical review of argumentation studies in science education. Research in Science Education, 43(1), 371–393.

    Article  Google Scholar 

  • Ødegaard, M. (2003). Dramatic science. a critical review of drama in science education. Studies in Science Education, 39(1), 75–101.

    Article  Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: the role of collaborative, critical discourse. Science, 328(5977), 463–466.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Oxford English Dictionary (OED) (2015). Online version. www.oed.com. Oxford: Oxford University Press.

  • Pantidos, P., Spathi, K., & Vitoratos, E. (2001). The use of drama in science education: the case of “Blegdamsvej Faust”. Science & Education, 10(1), 107–117.

    Article  Google Scholar 

  • Plantin, C. (2005). L’argumentation: Histoire, théories, perspectives. Paris: PUF.

    Google Scholar 

  • Plantin, C. (2016). Dictionnaire de l’argumentation. Une introduction conceptuelle aux études d’argumentation. Lyon: ENS Éditions.

    Google Scholar 

  • Pruzan, P. (2016). Research methodology: the aims, practices and ethics of science. Cham: Springer.

    Book  Google Scholar 

  • Psillos, D., & Kariotoglou, P. (2016). Theoretical issues related to designing and developing teaching-learning sequences. In D. Psillos & P. Kariotoglou (Eds.), Iterative design of teaching-learning sequences (pp. 11–34). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ratcliffe, M. (2005). Adolescent decision-making, by individuals and groups, about science-related societal issues. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp. 110–122). London: Taylor & Francis.

    Google Scholar 

  • Ratcliffe, M., Harris, R., & McWhirter, J. (2005). Cross-curricular collaboration in teaching social aspects of genetics. In K. Boersma, M. Goedhart, O. De Jong, & H. Eijkelholf (Eds.), Research and the quality of science education (pp. 77–88). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Reiss, M. J. (1999). Teaching ethics in science. Studies in Science Education, 34(1), 115–140.

    Article  Google Scholar 

  • Ribeiro, L., Severo, M., Pereira, M., & Ferreira, M. A. (2015). Scientific skills as core competences in medical education: what do medical students think? International Journal of Science Education, 37(12), 1875–1885.

    Article  Google Scholar 

  • Rigotti, E., & Greco Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education: theoretical foundations and practices (pp. 9–66). New York: Springer.

    Chapter  Google Scholar 

  • Rocksén, M., & Olander, C. (2016). A topical trajectory on survival: an analysis of link-making in a sequence of lessons on evolution. Research in Science Education. doi:10.1007/s11165-015-9509-3.

  • Ruiz-Primo, M. A. (2015). Cognitive labs. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 167–171). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. (2006). Socioscience and ethics in science classrooms: teacher perspectives and strategies. Journal of Research in Science Teaching, 43(4), 353–376.

    Article  Google Scholar 

  • Sæbø, A. B. (2009). Challenges and possibilities in Norwegian classroom drama practice. Research in Drama Education, 4(2), 279–294.

    Article  Google Scholar 

  • Schaffner, M., Little, G., Felton, H., & Parsons, B. (1984). Drama, language and learning. Reports of the drama and language research project. Speech and Drama Center, Education Department of Tasmania. NADIE Papers No. 1. Tasmania: National Association for Drama in Education.

  • Segal, G., & Cosgrove, M. (1994). “I want to find out how the sun works!” children’s sociodramatic play and its potential role in the early learning of physical science. Research in Science Education, 24(1), 304–312.

    Article  Google Scholar 

  • Simon, S., & Richardson, K. (2009). Argumentation in school science: breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning. Argumentation, 23(4), 469–493.

    Article  Google Scholar 

  • Smith, C. (2015). Role-plays and drama in science learning. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 841–843). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Solbes, J. (2013a). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (I): Introducción. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(1), 1–10.

    Google Scholar 

  • Solbes, J. (2013b). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (II): Ejemplos. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(2), 171–181.

    Google Scholar 

  • Sturm, B. (2009). The drama of science. Science in School, 13, 29–33.

    Google Scholar 

  • Sullivan, W. M. (2015). Professional responsibility: its nature and new demands. In D. E. Mitchell & R. K. Ream (Eds.), Professional responsibility: the fundamental issue in education and health care reform (pp. 59–74). Cham: Springer.

    Google Scholar 

  • Taber, K. S. (2015). Meeting educational objectives in the affective and cognitive domains: personal and social constructivist perspectives on enjoyment, motivation and learning chemistry. In M. Kahveci & M. Orgill (Eds.), Affective dimensions in chemistry education (pp. 3–27). Heidelberg: Springer.

    Google Scholar 

  • Taşkın-Can, B. (2013). The effects of using creative drama in science education on students’ achievements and scientific process skills. Elementary Education Online, 12(1), 120–131.

    Google Scholar 

  • The King’s Centre for Visualization in Science (KCVS). (2007). Should’ve a new play by Roald Hoffmann. Retrieved June 10, 2008, from: http://www.shouldve.kcvs.ca/home.html.

  • Toonders, W., Verhoeff, R. P., & Zwart, H. (2016). Performing the future. On the use of drama in philosophy courses for science students. Science & Education. doi:10.1007/s11191-016-9853-3.

  • Tsai, C.-Y. (2015). Improving students’ PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321–339.

    Article  Google Scholar 

  • Tsai, C.-C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: a content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14.

    Article  Google Scholar 

  • Varelas, M., Pappas, C. C., Tucker-Raymond, E., Kane, J., Hankes, J., Ortiz, I., & Keblawe-Shamah, N. (2010). Drama activities as ideational resources for primary-grade children in urban science classrooms. Journal of Research in Science Teaching, 47(3), 302–325.

    Google Scholar 

  • Wagner, B. J. (1976). Dorothy Heathcote: drama as a learning medium. Washington: National Education Association.

    Google Scholar 

  • Wang, J., & Buck, G. (2015). The relationship between Chinese students’ subject matter knowledge and argumentation pedagogy. International Journal of Science Education, 37(2), 340–366.

    Article  Google Scholar 

  • Way, B. (1967). Development through drama. Atlantic Highlands: Humanities Press.

    Google Scholar 

  • Wishart, J., Green, D., Joubert, M., & Triggs, P. (2011). Discussing ethical issues in school science: an investigation into the opportunities to practise and develop arguments offered by online and face-to-face discussions. International Journal of Science Education, 1(1), 47–69.

  • Wu, X., Anderson, R. C., Nguyen-Jahiel, K., & Miller, B. (2013). Enhancing motivation and engagement through collaborative discussion. Journal of Educational Psychology, 105(3), 622–632.

    Article  Google Scholar 

  • Yun, S. M., & Kim, H.-B. (2015). Changes in students’ participation and small group norms in scientific argumentation. Research in Science Education, 45(3), 465–484.

    Article  Google Scholar 

  • Zemplén, G. A. (2007). Conflicting agendas: critical thinking versus science education in the international baccalaureate theory of knowledge course. Science & Education, 16(2), 167–196.

    Article  Google Scholar 

  • Zemplén, G. A. (2011). History of science and argumentation in science education: joining forces? In P. V. Kokkotas, K. S. Malamitsa, & A. A. Rizaki (Eds.), Adapting historical knowledge production to the classroom (pp. 129–140). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

Download references

Acknowledgments

The author most humbly and gratefully acknowledges the inspiration provided by Roald Hoffmann who suggested using the play Should’ve for educational purposes. The author thanks Jeysson Fabian Sánchez-Suárez—the teacher involved in the study—for having accepted to use the teaching–learning sequence and adapt it according to the students’ situations. Thanks also to Pilar Luna-Calderón and Mayer Mesa-Piñeros for their support in the analysis process. The author would like to thank Anne-Marie de Mejía for their helpful comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Antonio Archila.

Ethics declarations

Conflict of interest

None.

Appendices

Appendix 1: Vocabulary in Scenes 3, 5, 11, and 12 of the Play Should’ve (Hoffmann 2006)

Schinken: ham.

Quack: characteristic sound of a duck.

Cornell: university located in New York.

Formaldehyde: chemical used for the preservation of biological samples and fresh corpses, usually at 5% in a solution with water.

Ithaca: city located on the southern shore of Cayuga Lake, Central New York.

Spanish flu virus: considered to be the most devastating pandemic (a disease that affects an entire people) in the history of flu in humans. Between 1918 and 1919, it killed 40 million people, many of whom were children.

Cayuga: village located in New York.

New Guinea: island located in the Southwest Pacific region.

Lise Meitner: Austrian physicist who worked on radioactivity and nuclear physics.

Zyklon gas: toxic substance widely used by the Nazis in World War II

Appendix 2: Questionnaire

1.1 Part one

  1. 1.

    In your opinion, are scientists responsible for the way their own work is used by others?

    1. a.

      Yes.

    2. b.

      No.

  2. 2.

    Why did you make that decision?

1.2 Part two

Use the text of Scenes 3, 5, 11, and 12 of the play Should’ve and the vocabulary list to answer the following questions.

  1. 3.

    What are Katie’s arguments?

  2. 4.

    Are Katie’s arguments adequate? Explain why or why not.

  3. 5.

    What are Stefan’s arguments?

  4. 6.

    Are Stefan’s arguments adequate? Explain why or why not.

  5. 7.

    What are Julia’s arguments?

  6. 8.

    Are Julia’s arguments adequate? Explain why or why not.

  7. 9.

    In your opinion, are scientists responsible for the way their own work is used by others?

  1. a.

    Yes.

  2. b.

    No.

  1. 10.

    Why did you make that decision?

1.3 Part three

Having concluded the small-group debate and the whole-class debate, answer the following questions.

  1. 11.

    In your opinion, are scientists responsible for the way their own work is used by others?

  1. a.

    Yes.

  2. b.

    No.

  1. 12.

    Why did you make that decision?

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archila, P.A. Using Drama to Promote Argumentation in Science Education. Sci & Educ 26, 345–375 (2017). https://doi.org/10.1007/s11191-017-9901-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-017-9901-7

Navigation