Skip to main content
Log in

Using History and Philosophy of Science to Promote Students’ Argumentation

A Teaching–Learning Sequence Based on the Discovery of Oxygen

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This article describes the effect of a teaching–learning sequence (TLS) based on the discovery of oxygen in promoting students’ argumentation. It examines the written and oral arguments produced by 63 high school students (24 females and 39 males, 16–17 years old) in France during a complete TLS supervised by the same teacher. The data used in this analysis was derived from students’ written responses, audio and video recordings, and written field notes. The first goal of this investigation was to provide evidence that an approach combining history and philosophy of science and argumentation could increase students’ awareness of the relevance of experimentation and communication to scientific progress. The second goal was to assess the effectiveness of the TLS to engage students in argumentative classroom interactions (such as debates) relating to the discovery of oxygen at the end of the 18th century. The findings show that this historical case can be useful for promoting students’ argumentation and is also appropriate for high school students. Future research should include students of other ages, other historical episodes and experiences in other parts of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See for example Adúriz-Bravo (2014), Gericke and Smith (2014) and Hodson (2014).

  2. See also Erduran et al. (2015), Lee et al. (2009), Lin et al. (2014) and Tsai and Wen (2005).

  3. See for example Archila (2013), Lyon et al. (2012) and Suriel (2014).

  4. See for example de Lima Tavares et al. (2010) and Wang and Buck (2015).

  5. See for example Buty and Plantin (2008), Jiménez-Aleixandre and Puig (2012) and Solbes (2013a, b).

  6. See for example Archila (2014a), El-Hani and Mortimer (2007) and Rigotti and Greco Morasso (2009).

  7. See for example Cavagnetto and Hand (2012), Kelly et al. (2007) and Osborne et al. (2004).

  8. See for example Archila (2015), Kermen and Méheut (2009), Konstantinidou and Macagno (2013), Macagno and Konstantinidou (2013) and Tsai (2015).

  9. See also Albe (2008) and Levinson (2008).

  10. See for example García-Liarte and Peña-Martínez (2011).

  11. See for example de Berg (2011).

  12. See for example de Berg (2014a) and Gaudillière (1994).

  13. See for example Begoray and Stinner (2005), Boujaoude et al. (2005), Braund (2015) and Ødegaard (2003).

  14. See for example Archila (2014b, c), Osborne (2010), Osborne et al. (2004), Simon et al. (2006).

  15. See for example Bell (2003), Jho et al. (2014), Khishfe (2012b), Maloney (2007) and Zoller and Nahum (2012).

  16. For example Berlin (Germany), London (England), Medellin (Colombia), New York (United States), Rennes (France), Tokyo (Japan). More details at http://www.djerassi.com/schedule/oxygen.html.

  17. See for example (Archila 2014b, d; Osborne et al. 2004; Simon et al. 2006; Xie and So 2012).

  18. The students were assigned codes to protect their privacy, for example 2S8 means Class 2 Student Number 8.

References

  • Abd-El-Khalick, F. (2003). Socioscientific issues in pre-college science classrooms: The primacy of learners’ epistemological orientations and views of nature of science. In D. L. Zeidler (Ed.), The role of moral reasoning in socioscientific issues and discourse in science education (pp. 41–61). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.

    Article  Google Scholar 

  • Abelson, P. H. (1980). Scientific communication. Science, 209(4452), 60–62.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1443–1472). Dordrecht: Springer.

    Google Scholar 

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8–9), 805–827.

    Article  Google Scholar 

  • Archila, P. A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361–375.

    Google Scholar 

  • Archila, P. A. (2013). La Argumentación y sus aportes a la enseñanza bilingüe de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3), 406–423.

    Google Scholar 

  • Archila, P. A. (2014a). Argumentación y educación en ciencias: Vínculos con la alfabetización y la cultura científica. In A. Molina (Ed.), Enseñanza de las ciencias y cultura: Múltiples aproximaciones (pp. 103–121). Bogotá: Ediciones Universidad Distrital Francisco José de Caldas.

  • Archila, P. A. (2014b). Are science teachers prepared to promote argumentation? A case study with pre-service teachers in Bogotá city. Asia-Pacific Forum on Science Learning and Teaching, 15(1), 1–21.

    Google Scholar 

  • Archila, P. A. (2014c). La argumentación de profesores de química en formación inicial (práctica profesional docente II): Un estudio de caso en Colombia. Enseñanza de las Ciencias, 32(3), 705–706.

    Google Scholar 

  • Archila, P. A. (2014d). Comment enseigner et apprendre chimie par l’argumentation? Saarbrücken: Éditions Universitaires Européennes.

    Google Scholar 

  • Archila, P. A. (2015). Uso de conectores y vocabulario espontaneo en la argumentación escrita: Aportes a la alfabetización científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(3), 402–418.

    Google Scholar 

  • Bader, B. (2003). Interpretation d'une controverse scientifique: Strategies argumentatives d'adolescentes et d'adolescents quebecois. Canadian Journal of Science, Mathematics and Technology Education, 3(2), 231–250.

    Article  Google Scholar 

  • Baker, M. J. (2002). Argumentative interactions, discursive operations and learning to model in science. In P. Brna, M. Baker, K. Stenning, & A. Tiberghien (Eds.), The role of communication in learning to model (pp. 303–324). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Baker, M. J. (2009). Argumentative interactions and the social construction of knowledge. In N. Muller & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 127–144). New York: Springer.

    Chapter  Google Scholar 

  • Begoray, D. L., & Stinner, A. (2005). Representing science through historical drama. Science & Education, 14(3–5), 457–471.

    Article  Google Scholar 

  • Bell, R. L. (2003). Exploring the role of NOS understandings in decision-making. In D. L. Zeidler (Ed.), The role of moral reasoning in socioscientific issues and discourse in science education (pp. 63–79). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Bensaude-Vincent, B., & Van Tiggelen, B. (2003). Foreword. In C. Djerassi, & R. Hoffmann (Eds.), Oxygène: Pièce en 1 acte. {Oxygen} (A. Kornprobst, & J.-C. Kornprobst, Trans. and Adap.). Toulouse: Presses Universitaires du Mirail.

  • Berland, L. K., & Hammer, D. (2012). Students’ framings and their participation in scientific argumentation. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 73–93). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Böttcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20(2), 103–140.

    Article  Google Scholar 

  • Boujaoude, S., Sowwan, S., & Abd-El-Khalick, F. (2005). The effect of using drama in science teaching on students’ conceptions of the nature of science. In K. Boersma, M. Goedhart, O. De Jong, & H. Eijkelholf (Eds.), Research and the quality of science education (pp. 259–267). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Braund, M. (2015). Drama and learning science: An empty space? British Educational Research Journal, 41(1), 102–121.

    Article  Google Scholar 

  • Buty, C., & Plantin, C. (2008). L’argumentation à l’épreuve de l’enseignement des sciences et vice-versa. In C. Buty, & C. Plantin (Eds.), Argumenter en classe de sciences. Du débat à l’apprentissage (pp. 17–42). Paris: Institut National de Recherche Pédagogique.

  • Cavagnetto, A., & Hand, B. (2012). The importance of embedding argument within science classrooms. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 39–53). Dordrecht: Springer.

    Chapter  Google Scholar 

  • de Berg, K. C. (2011). Joseph Priestley across theology, education, and chemistry: An interdisciplinary case study in epistemology with a focus on the science education context. Science & Education, 20(7–8), 805–830.

    Article  Google Scholar 

  • de Berg, K. C. (2014a). Teaching chemistry for all its worth: The interaction between facts, ideas, and language in Lavoisier’s and Priestley’s chemistry practice: The case of the study of the composition of air. Science & Education, 23(10), 2045–2068.

    Article  Google Scholar 

  • de Berg, K. C. (2014b). The place of the history of chemistry in the teaching and learning of chemistry. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 317–341). Dordrecht: Springer.

    Google Scholar 

  • de Hosson, C. (2011). Una controversia histórica al servicio de una situación de aprendizaje: Una reconstrucción didáctica basada en diálogo sobre los dos máximos sistemas del mundo de Galileo. Enseñanza de las Ciencias, 29(1), 115–126.

    Google Scholar 

  • de Hosson, C., & Décamp, N. (2014). Using ancient Chinese and Greek astronomical data: A training sequence in elementary astronomy for pre-service primary school teachers. Science & Education, 23(4), 809–827.

    Article  Google Scholar 

  • de Hosson, C., & Kaminski, W. (2007). Historical controversy as an educational tool: Evaluating elements of a teaching–learning sequence conducted with the text ‘‘Dialogue on the ways that vision operates’’. International Journal of Science Education, 29(5), 617–642.

    Article  Google Scholar 

  • de Lima Tavares, M., Jiménez-Aleixandre, M. P., & Mortimer, E. F. (2010). Articulation of conceptual knowledge and argumentation practices by high school students in evolution problems. Science & Education, 19(6–8), 573–598.

    Article  Google Scholar 

  • Djerassi, C., & Hoffmann, R. (2001a). Oxygen. Weinheim: Wiley-VCH.

    Google Scholar 

  • Djerassi, C., & Hoffmann, R. (2001b). Study guide for oxygen. Weinheim: Wiley-VCH.

    Google Scholar 

  • Djerassi, C., & Hoffmann, R. (2003a). Oxygen. In University Theatre Production of the Play by Carl Djerassi and Roald Hoffmann, Directed by Norma Saldivar, Produced by Wisconsin Initiative for Science Literacy and University of Wisconsin System.

  • Djerassi, C., & Hoffmann, R. (2003b). Oxygène. Pièce en 1 acte. {Oxygen} (A. Kornprobst, & J.-C. Kornprobst Trans. and Adap.). Toulouse: Presses Universitaires du Mirail.

  • El-Hani, C. N., & Mortimer, E. F. (2007). Multicultural education, pragmatism, and the goals of science teaching. Cultural Study of Science Education., 2, 657–702.

    Article  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2007a). Argumentation in science education: Perspectives from classroom-based research. New York: Springer.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2007b). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). New York: Springer.

    Chapter  Google Scholar 

  • Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2(5), 1–12.

    Google Scholar 

  • García-Liarte, D. A., & Peña-Martínez, M. (2011). Azul, blanco, rojo. Homenaje a Lavoisier. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8, 437–445.

    Google Scholar 

  • Garritz, A., Sosa, P., Hernández-Millán, G., López-Villa, N. M., Nieto-Calleja, E., Reyes-Cárdenas, F. M., & Robles-Haro, C. (2013). Una secuencia de enseñanza/aprendizaje para los conceptos de sustancia y reacción química con base en la naturaleza de la ciencia y la tecnología. Educación Química, 24(4), 439–450.

    Article  Google Scholar 

  • Gaudillière, J.-P. (1994). Lavoisier, Priestley, le phlogistique et l’oxygène de l’étude de controverse à la réplication pédagogique. Aster, 18, 183–215.

    Google Scholar 

  • Gericke, N. M., & Smith, M. U. (2014). Twenty-first-century genetics and genomics: Contributions of HPS-informed research and pedagogy. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 423–467). Dordrecht: Springer.

    Google Scholar 

  • Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.

    Google Scholar 

  • Hoffmann, R. (2004). The story of O. American Scientist, 92(1), 23–26.

    Article  Google Scholar 

  • Izquierdo, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.

    Article  Google Scholar 

  • Jho, H., Yoon, H.-G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131–1151.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2014). Determinism and under determination in genetics: Implications for students’ engagement in argumentation and epistemic practices. Science & Education, 23(2), 465–484.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kelly, G., Regev, J., & Prothero, W. (2007). Analysis of lines of reasoning in written argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 137–158). New York: Springer.

    Chapter  Google Scholar 

  • Kermen, I., & Méheut, M. (2009). Different models used to interpret chemical changes: Analysis of a curriculum and its impact on French students’ reasoning. Chemistry Education: Research and Practice, 10, 24–34.

    Google Scholar 

  • Khishfe, R. (2012a). Relationship between nature of science understandings and argumentation skills: A role for counterargument and contextual factors. Journal of Research in Science Teaching, 49(4), 489–514.

    Article  Google Scholar 

  • Khishfe, R. (2012b). Nature of science and decision-making. International Journal of Science Education, 34(1), 67–100.

    Article  Google Scholar 

  • Konstantinidou, A., & Macagno, F. (2013). Understanding students’ reasoning: Argumentation schemes as an interpretation method in science education. Science & Education, 22(5), 1069–1087.

    Article  Google Scholar 

  • Leach, J., Ametller, J., Hind, A., Lewis, J., & Scott, P. (2005). Designing and evaluating short science teaching sequences: Improving student learning. In K. Boersma, M. Goedhart, O. De Jong, & H. Eijkelholf (Eds.), Research and the quality of science education (pp. 209–220). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lederman, N. G. (2006). Research on nature of science: Reflections on the past, anticipations on the future. Asia-Pacific Forum on Science Learning and Teaching, 7(1), 1–11.

    Google Scholar 

  • Lee, M. H., Wu, Y. T., & Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.

    Article  Google Scholar 

  • Lehman, C., & Bensaude-Vincent, B. (2007). Public demonstrations of chemistry in eighteenth century France. Science & Education, 16(6), 573–583.

    Article  Google Scholar 

  • Leone, M. (2014). History of physics as a tool to detect the conceptual difficulties experienced by students: The case of simple electric circuits in primary education. Science & Education, 23(4), 923–953.

    Article  Google Scholar 

  • Levinson, R. (2008). Promoting the role of the personal narrative in teaching controversial socio-scientific issues. Science & Education, 17(8–9), 855–871.

    Article  Google Scholar 

  • Lin, T.-C., Lin, T.-J., & Tsai, C.-C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36(8), 1346–1372.

    Article  Google Scholar 

  • Lyon, E. G., Bunch, G. C., & Shaw, J. M. (2012). Navigating the language demands of an inquiry-based science performance assessment: Classroom challenges and opportunities for English learners. Science Education, 96(4), 631–651.

    Article  Google Scholar 

  • Macagno, F., & Konstantinidou, A. (2013). What students’ arguments can tell us: Using argumentation schemes in science education. Argumentation, 27(3), 225–243.

    Article  Google Scholar 

  • Maloney, J. (2007). Children’s roles and use of evidence in science: An analysis of decision-making in small groups. British Educational Research Journal, 33(3), 371–401.

    Article  Google Scholar 

  • Matthews, M. R. (Ed.). (2014). International handbook of research in history, philosophy and science teaching. Dordrecht: Springer.

    Google Scholar 

  • Mavrou, K., Douglas, G., & Lewis, A. (2007). The use of Transana as a video analysis tool in researching computer-based collaborative learning in inclusive classrooms in Cyprus. International Journal of Research & Method in Education, 30(2), 163–178.

    Article  Google Scholar 

  • Méheut, M. (2005). Teaching-learning sequences tools for learning and/or research. In K. Boersma, M. Goedhart, O. De Jong, & H. Eijkelholf (Eds.), Research and the quality of science education (pp. 195–207). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Méheut, M., & Psillos, D. (2004). Teaching–learning sequences: Aims and tools for science education research. International Journal of Science Education, 26(5), 515–535.

    Article  Google Scholar 

  • Metz, D., Klassen, S., McMillan, B., Clough, M., & Olson, J. (2007). Building a foundation for the use of historical narratives. Science & Education, 16(3–5), 313–334.

    Article  Google Scholar 

  • Milne, C. (2011). The invention of science: Why history of science matters for the classroom. Dordrecht: Sense Publishers.

    Book  Google Scholar 

  • Niaz, M. (2009). Progressive transitions in chemistry teachers’ understanding of nature of science based on historical controversies. Science & Education, 18(1), 43–65.

    Article  Google Scholar 

  • Nielsen, K. H. (2013). Scientific communication and the nature of science. Science & Education, 22(9), 2067–2086.

    Article  Google Scholar 

  • Ødegaard, M. (2003). Dramatic science. A critical review of drama in science education. Studies in Science Education, 39(1), 75–101.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Pessoa de Carvalho, A. M., & Vannucchi, A. I. (2000). History, philosophy and science teaching: Some answers to “How”? Science & Education, 9(5), 427–448.

    Article  Google Scholar 

  • Piliouras, P., Siakas, S., & Seroglou, F. (2011). Pupils produce their own narratives inspired by the history of science: Animation movies concerning the geocentric–heliocentric debate. Science & Education, 20(7–8), 761–795.

    Article  Google Scholar 

  • Rigotti, E., & Greco Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller & A.-N. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 9–66). New York: Springer.

    Chapter  Google Scholar 

  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.

    Article  Google Scholar 

  • Solbes, J. (2013a). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (I): Introducción. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(1), 1–10.

    Google Scholar 

  • Solbes, J. (2013b). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (II): Ejemplos. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(2), 171–181.

    Google Scholar 

  • Suriel, R. L. (2014). The triangulation of the science, English, and Spanish languages and cultures in the classroom: Challenges for science teachers of English language learners. In M. M. Atwater, & M. L. Russell (Eds.), Multicultural science education: Preparing teachers for equity and social justice (pp. 209–232). Dordrecht: Springer.

  • Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design-based research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275–2314.

    Article  Google Scholar 

  • Tsai, C.-Y. (2015). Improving students’ PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321–339.

    Article  Google Scholar 

  • Tsai, C.-C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14.

    Article  Google Scholar 

  • Wang, J., & Buck, G. (2015). The relationship between Chinese students’ subject matter knowledge and argumentation pedagogy. International Journal of Science Education, 37(2), 340–366.

    Article  Google Scholar 

  • Xie, Q., & So, W. (2012). Understanding and practice of argumentation: A pilot study with Mainland Chinese pre-service teachers in secondary science classrooms. Asia-Pacific Forum on Science Learning and Teaching, 13(2), 1–20.

    Google Scholar 

  • Zare, R. N. (2001). Oxygen—A play not just for chemists? Angewandte Chemie International Edition, 40(10), 1971–1972.

    Article  Google Scholar 

  • Zemplén, G. A. (2007). Conflicting agendas: Critical thinking versus science education in the international baccalaureate theory of knowledge course. Science & Education, 16(2), 167–196.

    Article  Google Scholar 

  • Zemplén, G. A. (2011). History of science and argumentation in science education: Joining forces? In P. V. Kokkotas, K. S. Malamitsa, & A. A. Rizaki (Eds.), Adapting historical knowledge production to the classroom (pp. 129–140). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Zoller, U., & Nahum, T. L. (2012). From teaching to know to learning to think in science education. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 209–229). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgments

The author is indebted to Roald Hoffmann and Bassam Shakhashiri for their generosity in providing the “Study Guide for Oxygen” and a copy of the DVD of the production O2xygen® used in this research to promote students' argumentation. The author thanks Catherine Royer—the teacher involved in the study—for having accepted to use the teaching–learning sequence and adapt it according to the students' situations. Thanks also to Cécile de Hosson and Isabelle Kermen for providing critical feedback on earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Antonio Archila.

Ethics declarations

Conflict of interest

None.

Appendices

Appendix 1: Vocabulary of Scene 8 of the Play Oxygen (Djerassi and Hoffmann 2001a)

  • Vital air: Oxygen

  • Fuel gas: Oxygen

  • Phlogiston: Fluid which provides heat (conception of the 17th and 18th centuries)

  • Dephlogisticated air: Oxygen

  • Mercurius calcinatus: Mercuric oxide, HgO

  • Acid of nitre: Nitric acid, HNO3

  • Alkali of tartar: Potassium carbonate, K2CO3

  • Burning lens: Convex lens used to bring about combustion by concentrating the sun’s rays on a small area

  • Silver salt: Silver nitrate, AgNO3

  • Red mercurius calcinatus: Mercuric oxide, HgO

  • Solid rouge: Mercuric oxide, HgO

  • 18 grains to 125 pounds: Units of measurement used in France before the French Revolution. The approximate conversions to current units are: 18 grains = 0.9 grams and 125 pounds = 61,187.5 grams

Appendix 2: Questionnaire

2.1 Part One

Use the text of Scene 8 of the play Oxygen and the vocabulary list to answer the following questions.

  1. 1.

    What are Scheele’s arguments?

  2. 2.

    Are Scheele’s arguments adequate? Explain why or why not.

  3. 3.

    What are Priestley’s arguments?

  4. 4.

    Are Priestley’s arguments adequate? Explain why or why not.

  5. 5.

    What are Lavoisier’s arguments?

  6. 6.

    Are Lavoisier’s arguments adequate? Explain why or why not.

  7. 7.

    In your opinion, who discovered oxygen?

    1. a.

      One of the three scientists: who?

    2. b.

      Two of the three scientists: who?

    3. c.

      All three scientists.

  8. 8.

    Why did you make that decision?

2.2 Part Two

Having watched Scene 8 of the University of Wisconsin–Madison’s theatre production of the play, answer the following questions.

  1. 9.

    In your opinion, who discovered oxygen?

    1. a.

      One of the three scientists: who?

    2. b.

      Two of the three scientists: who?

    3. c.

      All three scientists.

  2. 10.

    Why did you make that decision?

2.3 Part Three

After the small-group debate and the whole-class debate, answer the following questions.

  1. 11.

    In your opinion, who discovered oxygen?

    1. a.

      One of the three scientists: who?

    2. b.

      Two of the three scientists: who?

    3. c.

      All three scientists.

  2. 12.

    Why did you make that decision?

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archila, P.A. Using History and Philosophy of Science to Promote Students’ Argumentation. Sci & Educ 24, 1201–1226 (2015). https://doi.org/10.1007/s11191-015-9786-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-015-9786-2

Keywords

Navigation