Skip to main content

Teaching-Learning Sequences Tools for Learning and/or Research

  • Chapter
Research and the Quality of Science Education

Abstract

What can contribute to the ‘value’ of a piece of research about an innovative teaching-learning sequence from a research point of view and a teacher’s point of view? We will try to demonstrate that such values from these two perspectives are different, but not contradictory, and that they can be sought in the same research work. Two aspects will be developed and illustrated.

The first aspect is about ‘a priori’ justification. We will propose a general framework which can help to make the principles underlying the design of a sequence clear, and so situate various teaching-learning sequences concerning the same domain of knowledge. Such a framework can be useful both for researchers to make their choices and hypotheses more explicit and for teachers to select one approach over another.

The second aspect is about ‘a posteriori’ or ‘empirical’ validation. Referring to various pieces of research work, we will discuss the limits of usual ‘comparative’ approaches and will focus on more ‘internal’, ‘descriptive’ approaches. We will argue that describing cognitive pathways of learners through teaching-learning situations constitutes a fruitful tool, both for researchers to validate some of the choices or hypotheses underlying the design of the learning situations and for teachers to feel more comfortable with such innovative teaching-learning sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, B. & Bach, F. (1996). Developing new teaching sequences in science: the example of ‘Gases and their properties’. In G. Welford, J. Osborne & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp.7–21). London: The Falmer Press.

    Google Scholar 

  • Arnold, M. & Millar, R. (1996). Exploring the use of analogy in the teaching of heat, temperature and thermal equilibrium. In G. Welford, J. Osborne & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp.22–35). London: The Falmer Press.

    Google Scholar 

  • Artigue, M. (1988). Ingéniérie didactique. Recherches en didactique des Mathématiques, 9, 281–308.

    Google Scholar 

  • Asoko, H. (1996). Developing scientific concepts in the primary classroom: teaching about electric circuits. In G. Welford, J. Osborne & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp.36–49). London: The Falmer Press.

    Google Scholar 

  • Aufschnaiter, S. & Welzel, M. (1999). Individual learning processes: A research programme with focus on the complexity of situated cognition. In M. Bandiera et al. (Eds.), Research in science education in Europe (pp.209–215). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Boohan, R. (1996). Using a picture language to teach about processes of change. In G. Welford, J. Osborne & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp.85–99). London: The Falmer Press.

    Google Scholar 

  • Chang, C.-Y. & Barufaldi, J.-P. (1999). The use of a problem-solving-based instructional model in initiating change in students’ achievement and alternative frameworks. International Journal of Science Education, 21, 373–388.

    Article  Google Scholar 

  • Chauvet, F. (1996). Teaching colour: design and evaluation of a sequence. European Journal of Teacher Education 19, 119–134.

    Google Scholar 

  • Dekkers, P. (1993). Effectiveness of practical work in the remediation of alternative conceptions of force with students in Botswana. In P.L. Lijnse et al. (Ed.), European research in science education: Proceedings of the first PhD Summerschool (pp. 233–241). Utrecht: CDβ Press.

    Google Scholar 

  • Dewey, I. & Dykstra, Jr. (1992). Studying conceptual change: constructing new understandings. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: theoretical issues and empirical studies (pp.40–58). Kiel: IPN.

    Google Scholar 

  • Driver, R. & Bell, B. (1986). Students’ thinking and the learning of science: a constructivist view. The school science review, 67, 443–456.

    Google Scholar 

  • Driver, R. & Erickson, G. (1983). Theories in action: some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.

    Google Scholar 

  • Duit, R., Goldberg, F. & Niedderer, H. (1992). Research in physics learning: theoretical issues and empirical studies. Kiel: IPN.

    Google Scholar 

  • Duit, R., Roth, W-M, Komorek, M. & Wilbers, J. (1998). Conceptual change cum discourse analysis to understand cognition in a unit on chaotic systems: towards an integrative perspective on learning in science. International Journal of Science Education, 20, 1059–1073.

    Google Scholar 

  • Dumas-Carré, A. & Weil-Barais, A. (1998). Tutelle et médiation dans l’éducation scientifique. Bern, Peter Lang.

    Google Scholar 

  • Gilbert, J.K. & Boulter, C. (1998). Learning science through models and modelling. In B.J. Fraser and K.G. Tobin (Eds.), International Handbook of Science Education (pp.53–67). Dordrecht, Kluwer academic Press.

    Google Scholar 

  • Kaminski, W. (1991). Optique élémentaire en classe de quatrième: raisons et impact sur les maîtres d’une maquette d’enseignement. Thèse de doctorat, Université Paris 7.

    Google Scholar 

  • Kariotoglou, P., Koumaras, P. & Psillos, D. (1995). Différenciation conceptuelle: un enseignement d’hydrostatique fondé sur le développement et la contradiction des conceptions des élèves. Didaskalia, 7, 63–90.

    Google Scholar 

  • Kattmann, U., Duit, R., Gropengieber, H. & Komorek, M. (1995). A model of Educational Reconstruction. Paper presented at The NARST annual meeting. San Francisco.

    Google Scholar 

  • Komorek, M., Stavrou, D. & Duit, R. (2001). Nonlinear Physics in Upper Physics Classes: Educational Reconstruction as a Frame for Development and Research in a Study of Teaching and Learning Basic Ideas of Nonlinearity. In D. Psillos et al. (Eds.), Proceedings of the Third International Conference on Science Education Research in a Knowledge Based Society (pp.483–485). Thessaloniki: Art of Text.

    Google Scholar 

  • Leach, J. & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115–142.

    Google Scholar 

  • Lemeignan, G. & Weil-Barais, A. (1988). Etude de quelques activités de modélisation. In G. Vergnaud, G. Brousseau, M. Hulin (Eds.), Didactique et acquisition des connaissances scientifiques (pp.229–244). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Lemeignan, G. & Weil-Barais, A. (1992). L’apprentissage de la modélisation dans L’enseignement de l’énergie. In Equipe INRP-LIREST (Eds.), Enseignement et apprentissage de la modélisation en sciences (pp.171–232). Paris: INRP.

    Google Scholar 

  • Méheut, M. & Chomat, A. (1990). The bounds of children atomism; an attempt to make children build up a particulate model of matter. In P.L. Lijnse et al. (Eds.), Relating macroscopic phenomena to microscopic particles. (pp.266–282). Utrecht: CDβ Press.

    Google Scholar 

  • Méheut, M. (1997). Designing a learning sequence about a pre-quantitative model of gases: the parts played by questions and by a computer-simulation. International Journal of Science Education, 19, 647–660.

    Google Scholar 

  • Méheut, M. (1998). Designing learning sequences about pre-quantitative particle models. In A. Tiberghien, E.-L. Jossem & J. Barojas (Eds.), Connecting Research in Physics Education with Teacher Education http://www.physics.ohio-state.edu/~jossem/ICPE/BOOKS.html.

    Google Scholar 

  • Méheut, M. & Psillos, D. (org.) (2000) Designing and validating teaching-learning sequences in a research perspective. Paris.

    Google Scholar 

  • Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg and H. Niedderer (Eds.), Research in physics learning: theoretical issues and empirical studies (pp.110–128). Kiel: IPN.

    Google Scholar 

  • Morge, L. (2003). Les connaissances professionnelles locales: le cas d’une séance sur le modèle particulaire. Didaskalia, 23, 101–132.

    Google Scholar 

  • Mortimer, E.F. (1993). The evolution of students’ explanations for physical state of matter as a change in their conceptual profile. In P.L. Lijnse et al. (Eds.), European research in science education: Proceedings of the first PhD Summerschool (pp.281–287). Utrecht: CDβ Press.

    Google Scholar 

  • Nikolopoulou, K. (1993). An investigation into the effect of I.T. on pupils’ understanding of some science concepts and processes. In P.L. Lijnse et al. (Eds.), European research in science education: proceedings of the first PhD Summerschool (pp.206–214). Utrecht: CDβ Press.

    Google Scholar 

  • Nussbaum, J. & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: toward a principled teaching strategy. Instructional Science 11, 183–200.

    Article  Google Scholar 

  • Nussbaum, J. (1989). Classroom conceptual change: philosophical perspectives. International Journal of Science Education 11, 530–540.

    Google Scholar 

  • Petri, J. & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20, 1075–1088.

    Google Scholar 

  • Psillos, D. (1998). Teaching introductory electricity. In A. Tiberghien, E.-L. Jossem & J. Barojas (Eds.), Connecting Research in Physics Education with Teacher Education. http://www.physics.ohiostate.edu/~jossem/ICPE/BOOKS.html.

    Google Scholar 

  • Psillos, D. & Kariotoglou, P. (1999). Teaching fluids: intended knowledge and students’ actual conceptual evolution. International Journal of Science Education 21, 17–38.

    Article  Google Scholar 

  • Psillos, D. & Méheut, M. (coord.) (2001). Teaching-learning sequences as a means for linking research to development. In D. Psillos et al. (Eds.), Proceedings of the Third International Conference on Science Education Research in the Knowledge Based Society (pp.226–241). Thessaloniki, Art of Text.

    Google Scholar 

  • Ravanis, K. & Papamichael, Y. (1995). Procédures didactiques de déstabilisation du système de représentations spontanées des élèves pour la propagation de la lumière. Didaskalia 7, 43–61.

    Google Scholar 

  • Robardet, G. (1995). Situations problèmes et modélisation; enseignement en lycée d’un modèle newtonien de mécanique. Didaskalia, 7, 131–143.

    Google Scholar 

  • Schwedes, H. & Schmidt, D. (1992). Conceptual change and theoretical comments. In R. Duit, F. Goldberg and H. Niedderer (Eds.), Research in physics learning: theoretical issues and empirical studies (pp.188–202). Kiel: IPN.

    Google Scholar 

  • Tiberghien, A., Psillos, D. & Koumaras, P. (1995). Physics instruction from epistemological and didactical basis. Instructional Science, 22, 423–444.

    Article  Google Scholar 

  • Tsoumpelis, L. (1993). Explications et modèles dans des situations a-didactiques en sciences physiques: le cas de la concentration molaire. Thèse de doctorat. Université Lyon 1.

    Google Scholar 

  • Viennot, L. & Rainson, S. (1999). Design and evaluation of a research-based teaching sequence: the superposition of electric fields. International Journal of Science Education, 21, 1–16.

    Article  Google Scholar 

  • Welzel, M. (1998) Emergence of complex cognition during a unit on static electricity. International Journal of Science Education, 20, 1107–1118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

MéHeut, M. (2005). Teaching-Learning Sequences Tools for Learning and/or Research. In: Boersma, K., Goedhart, M., de Jong, O., Eijkelhof, H. (eds) Research and the Quality of Science Education. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3673-6_16

Download citation

Publish with us

Policies and ethics