Skip to main content

Advertisement

Log in

Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C–C, C–B, and C–S Bonds

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Since their discovery in 1970s, Katritzky salts have emerged as one of the most important classes of building blocks for use in organic synthesis and drug discovery. These bulky pyridinium salts derived from alkylamine can readily generate alkyl radical and undergo a variety of organic transformation reactions such as alkylation, arylation, alkenylation, alkynylation, carbonylation, sulfonylation, and borylation. Through these transformations, complexed molecules bearing new C–C, C–B, or C–S bonds can be constructed in easy ways and in simple steps. This review aims to summarize recent advances in these versatile building blocks in well-classified categories. Representative examples and their reaction mechanisms are discussed. The hope is to provide the scientific community with convenient access to collective information and accelerate further research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74

Similar content being viewed by others

Abbreviations

CSA:

Camphorsulfonic acid

DABCO:

1,4-Diazabicyclo[2,2,2]octane

DBU:

1,8-Diazabicyclo[5,4,0]undec-7-ene

DET:

Density functional theory

DMA:

N,N-Dimethylacetamide

dOMebpy:

4,4′-Dimethoxy-2,2′-bipyridine

dtbpy:

4,4′-Di-tert-butyl-2,2′-bipyridine

ET:

Electron transfer

Et3N:

Trimethylamine

HAT:

Hydrogen-atom transfer

PC:

Photocatalyst

PET:

Photoinduced electron transfer

SET:

Single-electron transfer

SER:

Single-electron reductant

SO2 :

Sulfur dioxide

TEA:

Trimethylamine

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

terpy:

Terpyridine

THIQs:

Tetrahydroisoquinolines

MIDA:

Methyliminodiacetic acid

NHC:

N-Heterocyclic carbene

References

  1. Li Y, Koike T, Akita M (2017) Photocatalytic trifluoromethylthiolation of aromatic alkenes associated with hydroxylation and alkoxylation. Asian J Org Chem 6:445–448

    Article  CAS  Google Scholar 

  2. Skubi KL, Blum TR, Yoon TP (2016) Dual catalysis strategies in photochemical synthesis. Chem Rev 116:10035–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xuan J, Zhang Z-G, Xiao W-J (2015) Visible-light-induced decarboxylative functionalization of carboxylic acids and their derivatives. Angew Chem Int Ed 54:15632–15641

    Article  CAS  Google Scholar 

  4. Ye Y, Liu J, Xu B, Jiang S, Bai R, Li S, Xie T, Ye X-Y (2021) Nickel-catalyzed enantioselective 1,2-vinylboration of styrenes. Chem Sci 12:13209–13215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao Y, Zhang H, Lirussi F, Garrido C, Ye X-Y, Xie T (2020) Dual inhibitors of histone deacetylases and other cancer-related targets: a pharmacological perspective. Biochem Pharmaco 182:114224

    Article  CAS  Google Scholar 

  6. Bapat JB, Blade RJ, Boulton AJ, Epsztajn J, Katritzky AR, Lewis J, Molina-Buendia P, Nie P-L, Ramsden CA (1976) Pyridines as leaving groups in synthetic transformations: nucleophilic displacements of amino groups, and novel preparations of nitriles and isocyanates. Tetrahedron Lett 17:2691–2694

    Article  Google Scholar 

  7. Katritzky AR, Gruntz U, Kenny DH, Rezende MC, Sheikh H (1979) Heterocycles in organic synthesis. Part 10. Conversion of amines into Esters. J Chem Soc Perkin Trans 1:430–432

    Article  Google Scholar 

  8. Katritzky AR, Marson CM (1984) Pyrylium mediated transformations of primary amino groups into other functional groups. Angew Chem Int Ed 23:420–429

    Article  Google Scholar 

  9. He F-S, Ye S, Wu J (2019) Recent advances in pyridinium salts as radical reservoirs in organic synthesis. ACS Catal 9:8943–8960

    Article  CAS  Google Scholar 

  10. Correia JTM, Fernandes VA, Matsuo BT, Delgado JAC, de Souza WC, Paixão MW (2020) Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors. Chem Commun 56:503–514

    Article  Google Scholar 

  11. Li Y, Xiao F, Guo Y, Zeng Y (2021) Recent developments in deaminative functionalization of alkyl amines. Eur J Org Chem 2021:1215–1228

    Article  CAS  Google Scholar 

  12. Clark T (1986) Radical addition to alkene-metal cation complex. J Chem Soc Chem Commun 20:1774–1776

    Article  Google Scholar 

  13. Zipse H, He J, Houk KN, Giese B (1991) On the transition states of electrophilic radical additions to alkenes. J Am Chem Soc 113:4324–4325

    Article  CAS  Google Scholar 

  14. Arceo E, Montroni E, Melchiorre P (2014) Photo-organocatalysis of atom-transfer radical additions to alkenes. Angew Chem Int Ed 53:12064–12068

    Article  CAS  Google Scholar 

  15. Radom L, Wong MW, Pross A (1995) Radical addition to alkenes: an assessment of theoretical procedures. J Phys Chem 99:8582–8588

    Article  Google Scholar 

  16. Voutyritsa E, Triandafillidi I, Tzouras NV, Nikitas NF, Pefkianakis EK, Vougioukalakis GC, Kokotos CG (2019) Photocatalytic atom transfer radical addition to olefins utilizing novel photocatalysts. Molecules 24:1644

    Article  CAS  PubMed Central  Google Scholar 

  17. Lanza T, Minozzi M, Monesi A, Nanni D, Spagnolo P, Chiappe C (2009) Radical additions of thiols to alkenes and alkynes in ionic liquids. Curr Org Chem 13:1726–1732

    Article  CAS  Google Scholar 

  18. Giese B (1983) Formation of CC bonds by addition of free radicals to alkenes. Angew Chem Int Ed 22:753–764

    Article  Google Scholar 

  19. Giese B, González-Gómez JA, Witzel T (1984) The scope of radical CC-coupling by the “Tin Method.” Angew Chem Int Ed 23:69–70

    Article  Google Scholar 

  20. Zhang Y, Wang W (2012) Recent advances in organocatalytic asymmetric michael reactions. Catal Sci Technol 2:42–53

    Article  CAS  Google Scholar 

  21. Zhang M-M, Liu F (2018) Visible-light-mediated allylation of alkyl radicals with allylic sulfones via deaminative strategy. Org Chem Front 5:3443

    Article  CAS  Google Scholar 

  22. Klauck FJR, Yoon H, James MJ, Lautens M, Glorius F (2019) Visible-light-mediated deaminative three-component dicarbofunctionalization of styrenes with benzylic radicals. ACS Catal 9:236–241

    Article  CAS  Google Scholar 

  23. Wu J, Grant PS, Li X, Noble A, Aggarwal VK (2019) Catalyst-free deaminative functionalizations of primary amines by photoinduced single-electron transfer. Angew Chem Int Ed 58:5697–5701

    Article  CAS  Google Scholar 

  24. James MJ, Strieth-Kalthoff F, Sandfort F, Klauck FJR, Wagener F, Glorius F (2019) Visible-light-mediated charge transfer enables C−C bond formation with traceless acceptor groups. Chem Eur J 25:8240–8244

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Li S, Zhang M, Liu F (2019) Synthesis of β, γ-unsaturated esters and γ-ketone esters with amino acid ester-derived Katritzky salts. Acta Chim Sin 77:916–921

    Article  CAS  Google Scholar 

  26. Lübbesmeyer M, Mackay EG, Raycroft MAR, Elfert J, Pratt DA, Studer A (2020) Base-promoted C−C bond activation enables radical allylation with homoallylic alcohols. J Am Chem Soc 142:2609–2616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Huang Y, Jia J, Huang Q-P, Zhao L, Wang P, Gu J, He C-Y (2020) Visible light promoted deaminative difluoroalkylation of aliphatic amines with difluoroenoxysilanes. Chem Commun 56:14247–14250

    Article  CAS  Google Scholar 

  28. Huang Q-P, Huang Y, Wang A-J, Zhao L, Jia J, Yu Y, Tong J, Gu J, He C-Y (2021) Visible light induced deaminative alkylation of difluoroenoxysilanes: a transition metal free strategy. Org Chem Front 8:4438–4444

    Article  CAS  Google Scholar 

  29. Ramesh V, Gangadhar M, Nanubolu JB, Adiyala PR (2021) Visible-light-induced deaminative alkylation/cyclization of alkyl amines with N-methacryloyl-2-phenylbenzoimidazoles in continuous-flow organo-photocatalysis. J Org Chem 86:12908–12921

    Article  CAS  PubMed  Google Scholar 

  30. Sun S-Z, Romano C, Martin R (2019) Site-selective catalytic deaminative alkylation of unactivated olefins. J Am Chem Soc 141:16197–16201

    Article  CAS  PubMed  Google Scholar 

  31. Baker KM, Lucas Baca D, Plunkett S, Daneker ME, Watson MP (2019) Engaging alkenes and alkynes in deaminative alkyl−alkyl and alkyl−vinyl cross-couplings of alkylpyridinium salts. Org Lett 21:9738–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin Y, Wu J, Lin Z, Lan Y, Wang C (2020) Merger of C−F and C−N bond cleavage in cross-electrophile coupling for the synthesis of gem-difluoroalkenes. Org Lett 22:5347–5352

    Article  CAS  PubMed  Google Scholar 

  33. Kim I, Im H, Lee H, Hong S (2020) N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chem Sci 11:3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baker KM, Tallon A, Loach RP, Bercher OP, Perry MA, Watson MP (2021) α-Chiral amines via thermally promoted deaminative addition of alkylpyridinium salts to sulfinimines. Org Lett 23:7735–7739

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Tao X, Mao Y, Yuan X, Qiu J, Kong L, Ni S, Guo K, Wang Y, Pan Y (2021) Electrochemical C−N bond activation for deaminative reductive coupling of Katritzky salts. Nat Commun 12:6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Xu Z-J, Liu Z-P, Lou H (2019) Visible-light-mediated de-aminative alkylation of N-arylamines with alkyl Katritzky salts. Org Chem Front 6:3902

    Article  CAS  Google Scholar 

  37. Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z (2020) Visible-light-promoted C(sp3)−H alkylation by intermolecular charge transfer: preparation of unnatural α-amino acids and late-stage modification of peptides. Angew Chem Int Ed 59:7461–7466

    Article  CAS  Google Scholar 

  38. Schönbauer D, Sambiagio C, Noël T, Schnürch M (2020) Photocatalytic deaminative benzylication and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts. Beilstein J Org Chem 16:809–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xia Q, Li Y, Wang X, Dai P, Deng H, Zhang W-H (2020) Visible light-driven α-alkylation of N-Aryl tetrahydroisoquinolines initiated by electron donor−acceptor complex. Org Lett 22:7290–7294

    Article  CAS  PubMed  Google Scholar 

  40. Yang T, Wei Y, Koh MJ (2021) Photoinduced Ni-catalyzed deaminative cross-electrophile coupling for C(sp2)−C(sp3) and C(sp3)−C(sp3) bond formation. ACS Catal 11:6519–6525

    Article  CAS  Google Scholar 

  41. Lu Y, Fang C-Z, Liu Q, Li B-L, Wang Z-X, Chen X-Y (2021) Donor−acceptor complex enables cascade radical cyclization of N-arylacrylamides with Katritzky salts. Org Lett 23:5425–5429

    Article  CAS  PubMed  Google Scholar 

  42. Ni S, Li C-X, Mao Y, Han J, Wang Y, Yan H, Pan Y (2019) Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C−N bond activation. Sci Adv 5:eaaw9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bercher OP, Plunkett S, Mortimer TE, Watson MP (2021) Deaminative reductive methylation of alkylpyridinium salts. Org Lett 23:7059–7063

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Cernak T (2021) The formal cross-coupling of amines and carboxylic acids to form sp3sp3 carbon−carbon bonds. Angew Chem Int Ed 60:27293–27298

    Article  CAS  Google Scholar 

  45. Plunkett S, Basch CH, Santana SO, Watson MP (2019) Harnessing alkyl pyridinium salts as electrophiles in deaminative alkyl−alkyl cross-couplings. J Am Chem Soc 141:2257–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng X, Yan W, Zacate SB, Cai A, Wang Y, Yang D, Yang K, Liu W (2020) Copper-catalyzed deaminative difluoromethylation. Angew Chem Int Ed 59:16398–16403

    Article  CAS  Google Scholar 

  47. Klauck FJR, James MJ, Glorius F (2017) Durch Sichtbares Licht Vermittelte Deaminierung Zur Erzeugung Von Alkylradikalen. Angew Chem Int Ed 56:12336–12339

    Article  CAS  Google Scholar 

  48. Zhu Z-F, Zhang M-M, Liu F (2019) Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis. Org Biomol Chem 17:1531–1534

    Article  CAS  PubMed  Google Scholar 

  49. Yi J, Badir SO, Kammer LM, Ribagorda M, Molander GA (2019) Deaminative reductive arylation enabled by Ni/photoredox dual catalysis. Org Lett 21:3346–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basch CH, Liao J, Xu J, Piane JJ, Watson MP (2017) Harnessing alkyl amines as electrophiles for Ni-catalyzed cross couplings via C−N bond activation. J Am Chem Soc 139:5313–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liao J, Guan W, Boscoe BP, Tucker JW, Tomlin JW, Garnsey MR, Watson MP (2018) Transforming benzylic amines into diarylmethanes: cross-couplings of benzylic pyridinium salts via C−N bond activation. Org Lett 20:3030–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoerrner ME, Baker KM, Basch CH, Bampo EM, Watson MP (2019) Deaminative arylation of amino acid-derived pyridinium salts. Org Lett 21:7356–7360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M (2019) Ni-catalyzed C−N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem Sci 10:4430–4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao J, Basch CH, Hoerrner ME, Talley MR, Boscoe BP, Tucker JW, Garnsey MR, Watson MP (2019) Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org Lett 21:2941–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin-Montero R, Yatham VR, Yin H, Davies J, Martin R (2019) Ni-catalyzed reductive deaminative arylation at sp3 carbon centers. Org Lett 21:2947–2951

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Z-F, Chen G-L, Liu F (2021) Ruthenium-catalysed meta-selective CAr−H bond alkylation via a deaminative strategy. Chem Commun 57:3411–3414

    Article  CAS  Google Scholar 

  57. Wei W, Yu H, Zangarelli A, Ackermann L (2021) Deaminative meta-C−H alkylation by ruthenium(II) catalysis. Chem Sci 12:8073–8078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ociepa M, Turkowska J, Gryko D (2018) Redox-activated amines in C(sp3)−C(sp) and C(sp3)−C(sp2) bond formation enabled by metal-free photoredox catalysis. ACS Catal 8:11362–11367

    Article  CAS  Google Scholar 

  59. Jiang X, Zhang M-M, Xiong W, Lu L-Q, Xiao W-J (2019) Deaminative (carbonylative) alkyl-heck-type reactions enabled by photocatalytic C−N bond activation. Angew Chem Int Ed 58:2402–2406

    Article  CAS  Google Scholar 

  60. Yang Z-K, Xu N-X, Wang C, Uchiyama M (2019) Photo-induced C(sp3)−N bond cleavage leading to stereoselective syntheses of alkenes. Chem Eur J 25:5433–5439

    Article  CAS  PubMed  Google Scholar 

  61. Zhang C-S, Bao L, Chen K-Q, Wang Z-X, Chen X-Y (2021) Photoinduced α-alkenylation of Katritzky salts: synthesis of β, γ-unsaturated esters. Org Lett 23:1577–1581

    Article  CAS  PubMed  Google Scholar 

  62. Wang J-X, Wang Y-T, Zhang H, Fu M-C (2021) Visible-light-induced iodine-anion-catalyzed decarboxylative/deaminative C−H alkylation of enamides. Org Chem Front 8:4466–4472

    Article  CAS  Google Scholar 

  63. Guan W, Liao J, Watson MP (2018) Vinylation of benzylic amines via C−N bond functionalization of benzylic pyridinium salts. Synthesis 50:3231–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu Z-F, Tu J-L, Liu F (2019) Ni-catalyzed deaminative hydroalkylation of internal alkynes. Chem Commun 55:11478

    Article  CAS  Google Scholar 

  65. Hu J, Cheng B, Yang X, Loh T-P (2019) Transition-metal-free deaminative vinylation of alkylamines. Adv Synth Catal 361:4902–4908

    Article  CAS  Google Scholar 

  66. Li C-L, Jiang X, Lu L-Q, Xiao W-J, Wu X-F (2019) Cobalt(II)-catalyzed alkoxycarbonylation of aliphatic amines via C−N bond activation. Org Lett 21:6919–6923

    Article  CAS  PubMed  Google Scholar 

  67. Yu C-G, Matsuo Y (2020) Ni-catalyzed deaminative acylation of activated aliphatic amines with aromatic amides via C−N bond activation. Org Lett 22:950–955

    Article  CAS  PubMed  Google Scholar 

  68. Pulikottil FT, Pilli R, Suku RV, Rasappan R (2020) Ni-catalyzed cross-coupling of alkyl carboxylic acid derivatives with pyridinium salts via C−N bond cleavage. Org Lett 22:2902–2907

    Article  CAS  PubMed  Google Scholar 

  69. Wang J, Hoerrner ME, Watson MP, Weix DJ (2020) Ni-catalyzed synthesis of dialkyl ketones from the coupling of N-alkyl pyridinium salts with activated carboxylic acids. Angew Chem Int Ed 59:13484–13489

    Article  CAS  Google Scholar 

  70. Zhao F, Li C-L, Wu X-F (2020) Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chem Commun 56:9182–9185

    Article  CAS  Google Scholar 

  71. Zhao F, Wu X-F (2021) Deaminative carbonylative thioesterification of activated alkylamines with thiophenols under transition-metal-free conditions. Org Chem Front 8:670–675

    Article  CAS  Google Scholar 

  72. Zhao F, Ai H, Wu X-F (2021) Radical carbonylation under low CO pressure: synthesis of esters from activated alkylamines at transition metal-free conditions. Chin J Chem 39:927–932

    Article  CAS  Google Scholar 

  73. Zhang X, Qi D, Jiao C, Liu X, Zhang G (2021) Ni-catalyzed deaminative sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand. Nat Commun 12:4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu J, Twitty JC, Watson MP (2021) Ni-catalyzed deaminative cyanation: nitriles and one-carbon homologation from alkyl amines. Org Lett 23:6242–6245

    Article  CAS  PubMed  Google Scholar 

  75. Wu J, He L, Noble A, Aggarwal VK (2018) Photoinduced deaminative borylation of alkylamines. J Am Chem Soc 140:10700–10704

    Article  CAS  PubMed  Google Scholar 

  76. Sandfort F, Strieth-Kalthoff F, Klauck FJR, James MJ, Glorius F (2018) Deaminative borylation of aliphatic amines enabled by visible light excitation of an electron donor−acceptor complex. Chem Eur J 24:17210–17214

    Article  CAS  PubMed  Google Scholar 

  77. Hu J, Wang G, Li S, Shi Z (2018) Lewis base promoted selective C−N borylation of alkyl amines. Angew Chem Int Ed 57:15227–15231

    Article  CAS  Google Scholar 

  78. Ma Y, Pang Y, Chabbra S, Reijerse EJ, Schnegg A, Niski J, Leutzsch M, Cornella J (2020) Radical C−N borylation of aromatic amines enabled by a pyrylium reagent. Chem Eur J 26:3738–3743

    Article  CAS  PubMed  Google Scholar 

  79. Yang M, Cao T, Xu T, Liao S (2019) Visible-light-induced deaminative thioesterification of amino acid derived Katritzky salts via electron donor−acceptor complex formation. Org Lett 21:8673–8678

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, Kuang Y, Ye S, Wu J (2019) Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide. Chem Commun 55:14962–14964

    Article  CAS  Google Scholar 

  81. Andrews JA, Pantaine LRE, Palmer CF, Poole DL, Willis MC (2021) Sulfinates from amines: a radical approach to alkyl sulfonyl derivatives via donor−acceptor activation of pyridinium salts. Org Lett 23:8488–8493

    Article  CAS  PubMed  Google Scholar 

  82. Li Z, Wang K-F, Zhao X, Ti H, Liu X-G, Wang H (2020) Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines. Nat Commun 11:5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li Q-L, Guo L-Y, Shi J, Xiang T-X, Li Q, He K-H, Wang B-Q, Feng C, Pan F (2021) Ni-catalyzed deaminative cross-coupling of disulfides with Katritzky pryidium salts to construct sulfides. Asian J Org Chem 10:2525–2529

    Article  CAS  Google Scholar 

  84. Zhu T, Shen J, Sun Y, Wu J (2021) Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chem Commun 57:915–918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82073686, 81730108, and 81973635), the Scientific Research Foundation for Scholars of Hangzhou Normal University (2021QDL042, 2019QDL003), the Ministry of Science and Technology of China (High-end foreign experts program, G20200217005 and G2021017004), the Hangzhou City “115” plan to introduce overseas intelligence projects (20200215 and 20210120), and the Hangzhou Normal University School of Medicine Teaching Reform Fund (4125b30100112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Wei Wang, Yang Ye or Tian Xie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jiang, S., Mao, ND. et al. Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C–C, C–B, and C–S Bonds. Top Curr Chem (Z) 380, 25 (2022). https://doi.org/10.1007/s41061-022-00381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00381-x

Keywords

Navigation