Skip to main content
Log in

A molecular electron density theory study on the [3 + 2] cycloaddition reaction of a 2,4-dienone and a nitrone: regioselectivity, diastereoselectivity, energetic aspects, and molecular mechanism

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

[3 + 2] Cycloaddition reaction of N-methyltrifluoromethylmethylene nitrone (MFN) and 2E,4E-5-(benzo[1,3]dioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (BPD) is studied using molecular electron density theory. The Parr functions analysis predicted successfully the local reactivities and consequent regioselectivity. The calculation of the reaction and activation Gibbs free energies confirmed that the formation of the reported major product under the experimental conditions is more favorable both kinetically and thermodynamically. The origin of this diastereoselectivity was explained by employing IGMH analysis. ELF analysis suggests that the reaction proceeds via a two-stage one-step mechanism and single bonds are formed via coupling of the pseudoradical centers and polarization of the non-bonding electrons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emamian S (2016) RSC Adv 6:75299

    CAS  Google Scholar 

  2. Ríos-Gutiérrez M, Domingo LR (2019) Eur J Org Chem 2019:267

    Google Scholar 

  3. Gothelf KV, Jørgensen KA (1998) Chem Rev 98:863

    CAS  PubMed  Google Scholar 

  4. Merino P (2004) Nitrones and Cyclic Analogues. In Science of Synthesis, vol 27. Thieme, New York

  5. Floyd RA, Kopke RD, Choi C-H, Foster SB, Doblas S, Towner RA (2008) Free Radical Biol Med 45:1361

    CAS  Google Scholar 

  6. Domingo LR, Ríos-Gutiérrez M, Pérez P (2018) J Org Chem 83:2182

    CAS  PubMed  Google Scholar 

  7. Nájera C, Sansano JM (2009) Org Biomol Chem 7:4567

    PubMed  Google Scholar 

  8. Jacobi P (2002) J Am Chem Soc 124:12634

    Google Scholar 

  9. Fišera L, Al-Timari UAR, Ertl P, Prónayová N (1993) Monatsh Chem 124:1019

    Google Scholar 

  10. Dugovič B, Fišera L, Hametner C, Cyrański MK, Prónayová N (2004) Monatsh Chem 135:685

    Google Scholar 

  11. Yotsu-Yamashita M, Kim YH, Dudley SC Jr, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) Proc Natl Acad Sci 101:4346

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aouadi K, Jeanneau E, Msaddek M, Praly J-P (2012) Tetrahedron Lett 53:2817

    CAS  Google Scholar 

  13. Seerden J-PG, Boeren MM, Scheeren HW (1997) Tetrahedron 53:11843

    CAS  Google Scholar 

  14. Frederickson M (1997) Tetrahedron 53:403

    CAS  Google Scholar 

  15. Ibrahim M, Khaja MN, Aara A, Khan AA, Habeeb MA, Devi YP, Narasu ML, Habibullah ChM (2008) World J Gastroenterol 14:2566

    PubMed  PubMed Central  Google Scholar 

  16. Kumar S, Malhotra S, Prasad AK, Van der Eycken EV, Bracke ME, Stetler-Stevenson WG, Parmar VS, Ghosh B (2015) Curr Top Med Chem 15:886

    CAS  PubMed  PubMed Central  Google Scholar 

  17. El Hamss R, Idaomar M, Alonso-Moraga A, Serrano AM (2003) Food Chem Toxicol 41:41

    PubMed  Google Scholar 

  18. Sunila E, Kuttan G (2004) J Ethnopharmacol 90:339

    CAS  PubMed  Google Scholar 

  19. Li S, Wang C, Li W, Koike K, Nikaido T, Wang M-W (2007) J Asian Nat Prod Res 9:421

    CAS  PubMed  Google Scholar 

  20. Krchnák V, Waring KR, Noll BC, Moellmann U, Dahse H-M, Miller MJ (2008) J Org Chem 73:4559

    PubMed  Google Scholar 

  21. Wójtowicz-Rajchel H, Kaźmierczak M (2020) New J Chem 44:6015

    Google Scholar 

  22. Emamian S, Soleymani M (2023) J Mol Graphics Modell 125:108596

    CAS  Google Scholar 

  23. Soleymani M (2018) Monatsh Chem 149:2183

    CAS  Google Scholar 

  24. Soleymani M, Jahanparvar S (2020) Monatsh Chem 151:51

    CAS  Google Scholar 

  25. Soleymani M, Chegeni M, Mohammadi E (2021) Monatsh Chem 152:1209

    CAS  Google Scholar 

  26. Domingo LR (2016) Molecules 21:1319

    PubMed  PubMed Central  Google Scholar 

  27. Huisgen R (1961) Centenary lecture - 1,3-dipolar cycloadditions. Royal Society of Chemistry, Cambridge, p 357

    Google Scholar 

  28. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748

    PubMed  PubMed Central  Google Scholar 

  29. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486

    CAS  Google Scholar 

  30. Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141

    CAS  Google Scholar 

  31. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417

    CAS  Google Scholar 

  32. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct THEOCHEM 865:68

    CAS  Google Scholar 

  33. Ryu H, Park J, Kim HK, Park JY, Kim S-T, Baik M-H (2018) Organometallics 37:3228

    CAS  Google Scholar 

  34. Domingo LR (2014) RSC Adv 4:32415

    CAS  Google Scholar 

  35. Domingo LR, Kula K, Ríos-Gutiérrez M (2020) Eur J Org Chem 2020:5938

    CAS  Google Scholar 

  36. Jasiński R (2018) Comput Theor Chem 1125:77

    Google Scholar 

  37. Lefebvre C, Rubez G, Khartabil H, Boisson J-C, Contreras-García J, Henon E (2017) Phys Chem Chem Phys 19:17928

    CAS  PubMed  Google Scholar 

  38. Lu T, Chen Q (2022) J Comput Chem 43:539

    CAS  PubMed  Google Scholar 

  39. Soleymani M (2022) J Chem Sci 134:99

    CAS  Google Scholar 

  40. Soleymani M, Goudarzi M (2023) J Struct Chem 64:859

    CAS  Google Scholar 

  41. Soleymani M, Goudarzi M (2024) Struct Chem 35:497

    CAS  Google Scholar 

  42. Domingo LR, Sáez JA (2011) J Org Chem 76:373

    CAS  PubMed  Google Scholar 

  43. Domingo LR, Saéz JA, Zaragozá RJ, Arnó M (2008) J Org Chem 73:8791

    CAS  PubMed  Google Scholar 

  44. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121

    CAS  PubMed  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  46. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    CAS  Google Scholar 

  47. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    CAS  Google Scholar 

  48. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    CAS  PubMed  Google Scholar 

  49. Domingo LR, Pérez P, Ortega DE (2013) J Org Chem 78:2462

    CAS  PubMed  Google Scholar 

  50. Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168

    CAS  PubMed  Google Scholar 

  51. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    CAS  Google Scholar 

  52. Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  53. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    CAS  Google Scholar 

  54. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    CAS  Google Scholar 

  55. Lu T, Chen F (2012) J Comput Chem 33:580

    PubMed  Google Scholar 

  56. Lu T, Chen F-W (2011) Acta Phys-Chim Sin 27:2786

    CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Research Council and Office of Graduate Studies of the Ayatollah Boroujerdi University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Soleymani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, M., Chegeni, M., Daei, N. et al. A molecular electron density theory study on the [3 + 2] cycloaddition reaction of a 2,4-dienone and a nitrone: regioselectivity, diastereoselectivity, energetic aspects, and molecular mechanism. Monatsh Chem 155, 601–612 (2024). https://doi.org/10.1007/s00706-024-03208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03208-1

Keywords

Navigation