Skip to main content
Log in

Effect of support on palladium catalyst for aqueous-phase hydrogenation of maleic acid to succinic acid

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The synthesis of succinic acid (SA), one of the monomers used to create poly(butylene succinate), a type of biodegradable plastic, has become a crucial and even bottleneck technology for the industry’s development. Herein, a series of Pd-based catalysts were prepared with amorphous TiO2, CeO2 and ZrO2 as the supports and applied in the aqueous-phase hydrogenation of maleic acid (MA) to SA at a low temperature about 60 °C. The metal–support interaction and the structure–activity relationship of Pd-based catalysts were investigated. It was found that the Pd/CeO2 catalyst was substantially more active than the Pd/TiO2 and Pd/ZrO2 catalysts. The strong interaction between the CeO2 and Pd inhibited the agglomeration of Pd during the reduction and reaction process, leading to much higher Pd dispersion. The exposure of more active sites for the adsorption of MA molecules accelerated the MA hydrogenation process, giving a much higher activity in the hydrogenation of MA to SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D. Pan, J. Zhou, B. Peng, S. Wang, Y. Zhao, X. Ma, Front. Chem. Sci. Eng. 16(3), 397 (2021)

    Article  Google Scholar 

  2. J. Zhang, L. Kong, Y. Chen, H. Huang, H. Zhang, Y. Yao, Y. Xu, Y. Xu, S. Wang, X. Ma, Y. Zhao, Front. Chem. Sci. Eng. 15(3), 666 (2020)

    Article  Google Scholar 

  3. J. Burns, C. McCoy, N. Irwin, J. Hosp. Infect. 111, 69 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. A. Cukalovic, C.V. Stevens, Biofuels Bioprod. Biorefining 2(6), 505 (2008)

    Article  CAS  Google Scholar 

  5. J. Tan, X. Xia, J. Cui, W. Yan, Z. Jiang, Y. Zhao, J. Phys. Chem. C 123(15), 9779 (2019)

    Article  CAS  Google Scholar 

  6. A.H. Tullo, Chem. Eng. News 95(7), 22 (2017)

    Article  Google Scholar 

  7. J.M. Pinazo, M.E. Domine, V. Parvulescu, F. Petru, Catal. Today 239, 17 (2015)

    Article  CAS  Google Scholar 

  8. M. Verma, P. Mandyal, D. Singh, N. Gupta, Chemsuschem 13(16), 4026 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. R. Kumar, B. Basak, B.H. Jeon, J. Clean Prod. 277, 20 (2020)

    Google Scholar 

  10. H.E. Yener, R. Erdmann, K. Jariyavidyanont, A.B. Mapossa, W.W. Focke, G. Hillrichs, R. Androsch, ACS Omega 7(10), 8377 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A.V. Muzumdar, S.B. Sawant, V.G. Pangarkar, Org. Process Res. Dev. 8(4), 685 (2004)

    Article  CAS  Google Scholar 

  12. N.P. Nghiem, S. Kleff, S. Schwegmann, Fermentation 3(2), 26 (2017)

    Article  Google Scholar 

  13. J. Cai, J. Zhu, L. Zuo, Y. Fu, J. Shen, Catal. Commun. 110, 93 (2018)

    Article  CAS  Google Scholar 

  14. P.K. Baidya, U. Sarkar, R. Villa, S. Sadhukhan, BMC Chem. Engineering 1, 1 (2019)

    Article  Google Scholar 

  15. Z. Gao, W. Chen, X. Chen, D. Wang, S. Yi, Bull. Korean Chem. Soc. 39(8), 920 (2018)

    Article  CAS  Google Scholar 

  16. X. Li, L. Cheng, X. Wang, Res. Chem. Intermed. 45(3), 1249 (2018)

    Article  Google Scholar 

  17. A. Bayat, S. Sadjadi, H. Arabi, N. Bahri-Laleh, Res. Chem. Intermed. 48(7), 3171 (2022)

    Article  CAS  Google Scholar 

  18. D. Jose, B.R. Jagirdar, Int. J. Hydrogen Energy 35(13), 6804 (2010)

    Article  CAS  Google Scholar 

  19. D. Gao, D. Yi, F. Lu, S. Li, L. Pan, Y. Xu, X. Wang, Chem. Eng. Sci. 240, 116664 (2021)

    Article  CAS  Google Scholar 

  20. K. Nobuhara, H. Kasai, W.A. Diño, H. Nakanishi, Surf. Sci. 566, 703 (2004)

    Article  Google Scholar 

  21. M.A. Kulagina, E.Y. Gerasimov, T.Y. Kardash, P.A. Simonov, A.V. Romanenko, Catal. Today 246, 72 (2015)

    Article  CAS  Google Scholar 

  22. M. Brzezinska, J. Niemeier, Y. Louven, N. Keller, R. Palkovits, A.M. Ruppert, Catal. Sci. Technol. 10(20), 6860 (2020)

    Article  CAS  Google Scholar 

  23. M. Byun, J. Kim, J. Baek, D. Park, M. Lee, Energies 12(2), 8 (2019)

    Article  Google Scholar 

  24. Y. Li, N. Fei, W. Li, Y. Cao, X. Ge, S. Dai, K. Yan, Q. Yuwen, X. Zhou, W. Yuan, Catal. Commun. 177, 106645 (2023)

    Article  CAS  Google Scholar 

  25. M. Dou, T. Deng, S. Qing, Z. Wang, L. Zhou, X. Li, X. Hou, Y. Wang, M. Tang, ACS Sustain. Chem. Eng. 10(50), 16538 (2022)

    Article  CAS  Google Scholar 

  26. S. Sun, D. Pan, H. Huang, Z. Wang, Y. Xu, Y. Zhao, Res. Chem. Intermed. 48(7), 3129 (2022)

    Article  CAS  Google Scholar 

  27. A. Orozco-Saumell, R. Mariscal, J. Iglesias, P. Maireles-Torres, M. López Granados, Sustain. Energy Fuels 6(22), 5160 (2022)

    Article  CAS  Google Scholar 

  28. M.L. Granados, J. Moreno, A.C. Alba-Rubio, J. Iglesias, D.M. Alonso, R. Mariscal, Green Chem. 22(6), 1859 (2020)

    Article  Google Scholar 

  29. T. Osaki, J. Porous Mater. 25, 697 (2018)

    Article  CAS  Google Scholar 

  30. X. Guo, G. Zhi, X. Yan, G. Jin, X. Guo, P. Brault, Catal. Commun. 12(10), 870 (2011)

    Article  CAS  Google Scholar 

  31. L. D’Souza, J. Saleh-Subaie, R. Richards, J. Colloid Interface Sci. 292(2), 476 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. M. Pisarek, P. Kedzierzawski, M. Andrzejczuk, M. Holdynski, A. Mikolajczuk-Zychora, A. Borodzinski, M. Janik-Czachor, Materials 13(5), 1195 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Cao, Z. Song, Z. Zhang, Y. Xiao, M. Zhang, X. Hu, Z. Liu, Y. Qu, A.C.S. Appl, Mater. Interfaces 13(21), 24957 (2021)

    Article  CAS  Google Scholar 

  34. N. Köpfle, K. Ploner, P. Lackner, T. Götsch, C. Thurner, E. Carbonio, M. Hävecker, A. Knop-Gericke, L. Schlicker, A. Doran, D. Kober, A. Gurlo, M. Willinger, S. Penner, M. Schmid, B. Klötzer, Catalysts 10(9), 1000 (2020)

    Article  Google Scholar 

  35. G.F. Tierney, S. Alijani, M. Panchal, D. Decarolis, M.B. de Gutierrez, K.M.H. Mohammed, J. Callison, E.K. Gibson, P.B.J. Thompson, P. Collier, N. Dimitratos, E.C. Corbos, F. Pelletier, A. Villa, P.P. Wells, ChemCatChem 13(24), 5121 (2021)

    Article  CAS  Google Scholar 

  36. M. Modelska, M.J. Binczarski, Z. Kaminski, S. Karski, B. Kolesinska, P. Mierczynski, C.J. Severino, A. Stanishevsky, I.A. Witonska, Catalysts 10(4), 23 (2020)

    Article  Google Scholar 

  37. C. Zhang, Y. Li, Y. Wang, H. He, Environ. Sci. Technol. 48(10), 5816 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. W. Liang, X. Du, Y. Zhu, S. Ren, J. Li, Catalysts 10(3), 14 (2020)

    Article  Google Scholar 

  39. Y. Yao, R. Fang, Z. Shi, M. Gong, Y. Chen, Chin. J. Catal. 32(4), 589 (2011)

    Article  CAS  Google Scholar 

  40. T.C.W. William, D. McFall, F.A. Lewis, J Chem Soc Chem Commun. 762(4), 2 (1973)

    Google Scholar 

  41. Q. Wei, Q. Ma, P. Zuo, H. Fan, S. Qu, W. Shen, ChemCatChem 10(5), 1019 (2018)

    Article  CAS  Google Scholar 

  42. H.J. Kim, J.H. Lee, M.W. Lee, Y. Seo, J.W. Choung, C.H. Kim, K.-Y. Lee, Mol. Catal. 492, 111014 (2020)

    Article  CAS  Google Scholar 

  43. S. Bhogeswararao, D. Srinivas, Catal. Lett. 140, 55 (2010)

    Article  CAS  Google Scholar 

  44. W. Zhang, J. Chang, G. Wang, Z. Li, M. Wang, Y. Zhu, B. Li, H. Zhou, G. Wang, M. Gu, Energy Environ. Sci. 15(4), 1573 (2022)

    Article  CAS  Google Scholar 

  45. P. Mondal, J. Satra, D.N. Srivastava, G.R. Bhadu, B. Adhikary, ACS Catal. 11(6), 3687 (2021)

    Article  CAS  Google Scholar 

  46. Y. Wu, J. Chen, W. Hu, K. Zhao, P. Qu, P. Shen, M. Zhao, L. Zhong, Y. Chen, J. Catal. 377, 565 (2019)

    Article  CAS  Google Scholar 

  47. Y. Hinuma, T. Toyao, N. Hamamoto, M. Takao, K.-I. Shimizu, T. Kamachi, J. Phys. Chem. C 124(50), 27621 (2020)

    Article  CAS  Google Scholar 

  48. Y. Zhou, Z. Wang, C. Liu, Catal. Sci. Technol. 5(1), 69 (2015)

    Article  CAS  Google Scholar 

  49. T. Kamigawara, H. Sugita, K. Mikami, Y. Ohta, T. Yokozawa, Catalysts 7(7), 195 (2017)

    Article  Google Scholar 

  50. G. Bampos, P. Bika, P. Panagiotopoulou, X.E. Verykios, Appl. Catal. A Gen. 588, 13 (2019)

    Article  Google Scholar 

  51. N.A. Khan, S. Shaikhutdinov, H.J. Freund, Catal. Lett. 108(3–4), 159 (2006)

    Article  CAS  Google Scholar 

  52. X.-P. Gao, Z.-L. Guo, Y.-N. Zhou, F.-L. Jing, W. Chu, Acta Phys. Chim. Sin. 33(3), 602 (2017)

    Article  CAS  Google Scholar 

  53. C. Tang, Y. Zhao, T. Li, Z. Liao, B. Xu, Z. Jiao, G. Zhou, Int. J. Chem. Reactor Eng. 20(2), 251 (2021)

    Article  Google Scholar 

  54. Z. Li, T. Thuening, W.T. Tysoe, Surf. Sci. 646, 65 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support from the National Natural Science Foundation of China (22278309) and the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. BY was responsible for the writing of the article and the collection of experimental data. SS was responsible for the collection of experimental data. HW proposed guidance for the writing of the paper. HH provided important help for the experiment. MUR modified the language of the paper. XS assisted in the collection of experimental data. YX guided the overall work and YZ guided the overall work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan Xu or Yujun Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bin Ye and Simin Sun are Cofirst author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Sun, S., Wang, H. et al. Effect of support on palladium catalyst for aqueous-phase hydrogenation of maleic acid to succinic acid. Res Chem Intermed 49, 4443–4459 (2023). https://doi.org/10.1007/s11164-023-05083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05083-7

Keywords

Navigation