Skip to main content
Log in

The cooperation effect of Ni and Pt in the hydrogenation of acetic acid

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The catalytic hydrogenation of carboxylic acid to alcohols is one of the important strategies for the conversion of biomass. Herein, a series of Ni-doped PtSn catalysts were prepared, characterized and studied in the hydrogenation of acetic acid. The Ni dopant has a strong interaction with Pt, which promotes the hydrogen adsorption, providing an activated hydrogen-rich environment for the hydrogenation. Meanwhile, the presence of Ni also improves the Pt dispersion, giving more accessible active sites for hydrogen activation. The cooperation of Pt and Ni significantly promotes the catalytic activity of the hydrogenation of acetic acid to ethanol. As a result, the catalyst with 0.1% Ni exhibits the best reaction activity, and its space time yield is twice as that of the PtSn/SiO2 catalyst. It provides a meaningful instruction on the catalyst design for the carboxylic acid hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldemberg J. Ethanol for a sustainable energy future. Science, 2007, 315(5813): 808–810

    Article  CAS  PubMed  Google Scholar 

  2. Pestman R, Koster R M, Boellaard E, van der Kraan A M, Ponec V. Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. Journal of Catalysis, 1998, 174(2): 142–152

    Article  CAS  Google Scholar 

  3. Manyar H G, Paun C, Pilus R, Rooney D W, Thompson J M, Hardacre C. Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts. Chemical Communications, 2010, 46(34): 6279–6281

    Article  CAS  PubMed  Google Scholar 

  4. Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chemical Society Reviews, 2013, 42(16): 6593–6604

    Article  CAS  PubMed  Google Scholar 

  5. Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews, 2012, 41(15): 5262–5284

    Article  CAS  PubMed  Google Scholar 

  6. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. Journal of the American Chemical Society, 2015, 137(33): 10484–10487

    Article  CAS  PubMed  Google Scholar 

  7. Vile G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M, Lopez N, Perez-Ramirez J. A stable single-site palladium catalyst for hydrogenations. Angewandte Chemie International Edition, 2015, 54(38): 11265–11269

    Article  CAS  PubMed  Google Scholar 

  8. Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T. Little do more: a highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chemical Communications, 2015, 51(37): 7911–7914

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Ye L, Chen J, Duan X, Lin H, Yuan Y. FeSBA-15-supported ruthenium catalyst for the selective hydrogenolysis of carboxylic acids to alcoholic chemicals. Catalysis Today, 2015, 251: 53–59

    Article  CAS  Google Scholar 

  10. Pallassana V, Neurock M. Reaction paths in the hydrogenolysis of acetic acid to ethanol over Pd(111), Re(0001), and PdRe alloys. Journal of Catalysis, 2002, 209(2): 289–305

    Article  CAS  Google Scholar 

  11. Rachmady W, Vannice M A. Acetic acid reduction by H2 on bimetallic Pt-Fe catalysts. Journal of Catalysis, 2002, 209(1): 87–98

    Article  CAS  Google Scholar 

  12. Zhang S, Duan X, Ye L, Lin H, Xie Z, Yuan Y. Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles. Catalysis Today, 2013, 215: 260–266

    Article  CAS  Google Scholar 

  13. Zhang K, Zhang H T, Ma H F, Ying W Y, Fang D Y. Effect of Sn addition in gas phase hydrogenation of acetic acid on alumina supported PtSn catalysts. Catalysis Letters, 2014, 144(4): 691–701

    Article  CAS  Google Scholar 

  14. Xu G, Zhang J, Wang S, Zhao Y, Ma X. A well fabricated PtSn/SiO2 catalyst with enhanced synergy between Pt and Sn for acetic acid hydrogenation to ethanol. RSC Advances, 2016, 6(56): 51005–51013

    Article  CAS  Google Scholar 

  15. Zhou J H, Zhao Y J, Zhang J, Wang Y, Gutierrez O Y, Wang S N, Li Z X, Jin P, Wang S P, Ma X B, et al. A nitrogen-doped PtSn nanocatalyst supported on hollow silica spheres for acetic acid hydrogenation. Chemical Communications, 2018, 54(64): 8818–8821

    Article  CAS  PubMed  Google Scholar 

  16. Xu G, Zhang J, Wang S, Zhao Y, Ma X. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2016, 10(3): 417–424

    Article  CAS  Google Scholar 

  17. Rachmady W, Vannice M A. Acetic acid reduction to acetaldehyde over iron catalysts I. Kinetic behavior. Journal of Catalysis, 2002, 208(1): 158–169

    CAS  Google Scholar 

  18. Zhou M, Zhang H, Ma H, Ying W. The catalytic properties of K modified PtSn/Al2O3 catalyst for acetic acid hydrogenation to ethanol. Fuel Processing Technology, 2016, 144: 115–123

    Article  CAS  Google Scholar 

  19. Siri G J, Bertolini G R, Casella M L, Ferretti O A. PtSn/γ-Al2O3 isobutane dehydrogenation catalysts: the effect of alkaline metals addition. Materials Letters, 2005, 59(18): 2319–2324

    Article  CAS  Google Scholar 

  20. Wang Z, Li G, Liu X, Huang Y, Wang A, Chu W, Wang X, Li N. Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43: 38–41

    Article  Google Scholar 

  21. Kim S M, Abdala P M, Margossian T, Hosseini D, Foppa L, Armutlulu A, van Beek W, Comas-Vives A, Coperet C, Mueller C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. Journal of the American Chemical Society, 2017, 139(5): 1937–1949

    Article  CAS  PubMed  Google Scholar 

  22. Han Q, Rehman M U, Wang J, Rykov A, Gutierrez O Y, Zhao Y, Wang S, Ma X, Lercher J A. The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental, 2019, 253: 348–358

    Article  CAS  Google Scholar 

  23. Ruan Y, Zhao Y, Lu Y, Guo D, Zhao Y, Wang S, Ma X. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming. Microporous and Mesoporous Materials, 2020, 303: 1–9

    Article  Google Scholar 

  24. Lu Y, Guo D, Ruan Y, Zhao Y, Wang S, Ma X. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane. Journal of CO2 Utilization, 2018, 24: 190–199

    Article  CAS  Google Scholar 

  25. Xiang M, Zou J, Li D, Li W, Sun Y, She X. Nickel and potassium co-modified β-Mo2C catalyst for CO conversion. Journal of Natural Gas Chemistry, 2009, 18(2): 183–186

    Article  CAS  Google Scholar 

  26. Xiang M, Li D, Li W, Zhong B, Sun Y. Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas. Catalysis Communications, 2007, 8(3): 513–518

    Article  CAS  Google Scholar 

  27. Han S, Liu Y, Li J, Li R, Yuan F, Zhu Y. Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200

    Article  Google Scholar 

  28. Zhang J, Kong L, Chen Y, Huang H, Zhang H, Yao Y, Xu Y, Xu Y, Wang S, Ma X, Zhao Y. Enhanced synergy between Cu and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678

    Article  CAS  Google Scholar 

  29. Wang Q Q, Qu J, Liu Y, Gui C X, Hao S M, Yu Y, Yu Z Z. Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage. Nanoscale, 2015, 7(40): 16805–16811

    Article  CAS  PubMed  Google Scholar 

  30. Schreier M, Regalbuto J R. A fundamental study of Pt tetraammine impregnation of silica 1. The electrostatic nature of platinum adsorption. Journal of Catalysis, 2004, 225(1): 190–202

    Article  CAS  Google Scholar 

  31. Miller J T, Schreier M, Kropf A J, Regalbuto J R. A fundamental study of platinum tetraammine impregnation of silica 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. Journal of Catalysis, 2004, 225(1): 203–212

    Article  CAS  Google Scholar 

  32. Boonpai S, Wannakao S, Suriye K, Marquez V, Panpranot J, Jongsomjit B, Praserthdam P, Bell A T. Influence of surface Sn species and hydrogen interactions on the OH group formation over spherical silica-supported tin oxide catalysts. Reaction Chemistry & Engineering, 2020, 5(9): 1814–1823

    Article  CAS  Google Scholar 

  33. Kamiuchi N, Taguchi K, Matsui T, Kikuchi R, Eguchi K. Sintering and redispersion of platinum catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2009, 89(1–2): 65–72

    Article  CAS  Google Scholar 

  34. Rynkowski J, Rajski D, Szyszka I, Grzechowiak J R. Effect of platinum on the hydrogenation activity of nickel catalysts. Catalysis Today, 2004, 90(1–2): 159–166

    Article  CAS  Google Scholar 

  35. Zhang C, Lv W, Yang Q, Liu Y. Graphene supported nano particles of Pt-Ni for CO oxidation. Applied Surface Science, 2012, 258(20): 7795–7800

    Article  CAS  Google Scholar 

  36. Mahoney E G, Pusel J M, Stagg-Williams S M, Faraji S. The effects of Pt addition to supported Ni catalysts on dry (CO2) reforming of methane to syngas. Journal of CO2 Utilization, 2014, 6: 40–44

    Article  CAS  Google Scholar 

  37. Taniya K, Jinno H, Kishida M, Ichihashi Y, Nishiyama S. Preparation of Sn-modified silica-coated Pt catalysts: a new Pt-Sn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. Journal of Catalysis, 2012, 288: 84–91

    Article  CAS  Google Scholar 

  38. Alcala R, Mavrikakis M, Dumesic J A. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111). Journal of Catalysis, 2003, 218(1): 178–190

    Article  CAS  Google Scholar 

  39. Takeda Y, Nakagawa Y, Tomishige K. Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx-Pd/SiO2 catalyst. Catalysis Science & Technology, 2012, 2(11): 2221–2223

    Article  CAS  Google Scholar 

  40. Zhao X, Wu K, Liao W, Wang Y, Hou X, Jin M, Suo Z, Ge H. Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol. Green Energy & Environment, 2019, 4(3): 300–310

    Article  Google Scholar 

  41. Pudukudy M, Yaakob Z, Jia Q, Takriff M S. Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New Journal of Chemistry, 2018, 42(18): 14843–14856

    Article  CAS  Google Scholar 

  42. Abbas S A, Kim S H, Iqbal M I, Muhammad S, Yoon W S, Jung K D. Synergistic effect of nano-Pt and Ni spine for HER in alkaline solution: hydrogen spillover from nano-Pt to Ni spine. Scientific Reports, 2018, 8(1): 8

    Article  Google Scholar 

  43. Tellez-Romero J G, Cuevas-Garcia R, Ramirez J, Castillo-Villalon P, Contreras-Barbara R, Salcedo-Luna M C, Puente-Lee R I. Simultaneous naphthalene and thiophene hydrogenation over Ni (X)-Pt/HMOR catalysts. Catalysis Today, 2015, 250: 12–20

    Article  CAS  Google Scholar 

  44. Wang X F, Liang X H, Geng P, Li Q B. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412

    Article  CAS  Google Scholar 

  45. Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Zheng C, Zhang M, Qiu Y, Xu Q, Cheong W C, Chen W, Zheng L, Gu L, Hu Z, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13(11): 3082–3087

    Article  Google Scholar 

  47. Zhang Z D, Zhou M, Chen Y J, Liu S J, Wang H F, Zhang J, Ji S F, Wang D S, Li Y D. Pd single-atom monolithic catalyst: functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919–1929

    Article  CAS  Google Scholar 

  48. Ren Z, Younis M N, Li C, Li Z, Yang X, Wang G. Highly active Ce, Y, La-modified Cu/SiO2 catalysts for hydrogenation of methyl acetate to ethanol. RSC Advances, 2020, 10(10): 5590–5603

    Article  CAS  Google Scholar 

  49. Dong X, Lei J, Chen Y, Jiang H, Zhang M. Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458

    Article  CAS  Google Scholar 

  50. Beerthuis R, de Rijk J W, Deeley J M S, Sunley G J, de Jong K P, de Jongh P E. Particle size effects in copper-catalyzed hydrogenation of ethyl acetate. Journal of Catalysis, 2020, 388: 30–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China are acknowledged for the financial support on this work (Grant No. 21878227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Peng or Yujun Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Zhou, J., Peng, B. et al. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Front. Chem. Sci. Eng. 16, 397–407 (2022). https://doi.org/10.1007/s11705-021-2076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2076-4

Keywords

Navigation