Skip to main content
Log in

Plasmon induced photoluminescent emission from PED Ag–In alloy

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Blending of two metals possessing localized surface plasmon resonance (LSPR) alters the optical behavior and aids in tuning the resonance frequency of oscillating electrons and controlling the emission. In this study, the silver solid solution with indium as solute has been synthesized using pulsed electrodeposition technique and is reported. The obtained particles retained the cubic structure on varying the precursor concentration of silver and indium in the electrolyte. The average crystallite size was estimated to be ~ 25 nm using Scherrer’s formula. Parameters such as applied current density, complexing agent and increase in silver concentration all favored the alignment of particles in the form of dendrites. This LSPR in the nanoparticles is evidenced through photoluminescent emission, and fluorescence decay time is estimated to be 2 ns. The LSPR leads to the photoluminescent emission from Ag–In particles while exciting them at 300 nm. The thermal stability of the samples has been studied using TGA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhang, W.-B. Miu, J. Yao, L. Sun, B. Yu, Res. Chem. Intermed. 44, 3365 (2018)

    Article  CAS  Google Scholar 

  2. Y. Hu, X. Hong, Synthesis and performance of silver photocatalytic nanomaterials for water disinfection, in Advances in Photocatalytic Disinfection, ed. by T. An, H. Zhao, P.K. Wong (Springer, Berlin, 2017), pp. 85–127

    Chapter  Google Scholar 

  3. S. Zhao, R. Jin, R. Jin, ACS Energy Lett. 3, 452 (2018)

    Article  CAS  Google Scholar 

  4. V. Amendola, O. Bakr, F. Stellacci, Plasmonics 5, 85 (2010)

    Article  CAS  Google Scholar 

  5. J. Sekhon, H. Malik, S. Verma, RSC Adv. 3(35), 15427 (2013)

    Article  CAS  Google Scholar 

  6. Y.-H. Su, W.-L. Wang, Nanoscale Res. Lett. 8, 408 (2013)

    Article  Google Scholar 

  7. T. El-Brolossy, T. Abdallah, M. Mohamed, S. Abdallah, K. Easawi, S. Negm, M.H. Talaat, Eur. Phys. J. Spec. Top. 153, 361 (2008)

    Article  Google Scholar 

  8. X. Le Guével, C. Spies, N. Daum, G. Jung, M. Schneider, Nano. Res. 5, 379 (2012)

    Article  Google Scholar 

  9. T. Endo, R. Ikeda, Y. Yanagida, T. Hatsuzawa, Anal. Chim. Acta 611, 205 (2008)

    Article  CAS  Google Scholar 

  10. Y. Chen, W.W. So, C.C. Lee, I.E.E.E. Trans, Compon. Packag. Manuf. Technol. A 20, 46 (1997)

    Article  Google Scholar 

  11. M. Taher, F. Mao, P. Berastegui, A.M. Andersson, U. Jansson, Tribol. Int. 125, 121 (2018)

    Article  CAS  Google Scholar 

  12. C.A. Yang, S. Yang, X. Liu, H. Nishikawa, C.R. Kao, J. Alloys Compd. 762, 586 (2018)

    Article  CAS  Google Scholar 

  13. G.O. Larrazábal, A.J. Martín, S. Mitchell, R. Hauert, J. Pérez-Ramírez, J. Catal. 343, 266 (2016)

    Article  Google Scholar 

  14. R.G. Allen, T.E. Stephenson, C.P. Stanford, S. Bernstein, Phys. Rev. 96, 1297 (1954)

    Article  CAS  Google Scholar 

  15. Y.S. Jung, Y.W. Choi, H.C. Lee, D.W. Lee, Thin Solid Films 440, 278 (2003)

    Article  CAS  Google Scholar 

  16. B. Hu, L.-H. Wu, S.-J. Liu, H.-B. Yao, H.-Y. Shi, G.-P. Li, S.-H. Yu, Chem. Commun. 46, 2277 (2010)

    Article  CAS  Google Scholar 

  17. T. Sivaranjani, T.A. Revathy, S. Dhanavel, K. Dhanapal, V. Narayanan, A. Stephen, ChemistrySelect 3, 12613 (2018)

    Article  CAS  Google Scholar 

  18. K. Santhi, V. Narayanan, S. Arumainathan, Appl. Surf. Sci. 316, 491 (2014)

    Article  CAS  Google Scholar 

  19. C. Larson, J.P.G. Farr, Trans. IMF 90, 20 (2012)

    Article  CAS  Google Scholar 

  20. K. Santhi, S.N. Karthick, H.-J. Kim, M. Nidhin, V. Narayanan, A. Stephen, Appl. Surf. Sci. 258, 3126 (2012)

    Article  CAS  Google Scholar 

  21. K. Santhi, H.-J. Kim, D.M. Nidhin, V. Narayanan, S. Arumainathan, Appl. Surf. Sci. 258, 3126 (2012)

    Article  CAS  Google Scholar 

  22. S. Sengar, B. Mehta, G. Gupta, J. Appl. Phys. 112, 014307 (2012)

    Article  Google Scholar 

  23. K. Santhi, D. Kumarsan, N. Vengidusamy, S. Arumainathan, J. Magn. Magn. Mater. 433, 202 (2017)

    Article  CAS  Google Scholar 

  24. T.A. Revathy, T. Sivaranjani, A.A. Boopathi, S. Sampath, V. Narayanan, A. Stephen, Res. Chem. Intermed. 45, 815 (2019)

    Article  CAS  Google Scholar 

  25. E.V. Shevchenko, D.V. Talapin, Self-assembly of semiconductor nanocrystals into ordered superstructures, in Semiconductor Nanocrystal Quantum Dots: Synthesis Assembly Spectroscopy and Applications, ed. by A.L. Rogach (Springer, Vienna, 2008), pp. 119–169

    Chapter  Google Scholar 

  26. T.-H. Lin, C.-W. Lin, H.-H. Liu, J.-T. Sheu, W.-H. Hung, Chem. Commun. 47, 2044 (2011)

    Article  CAS  Google Scholar 

  27. J.W. Diggle, A.R. Despic, J.O.M. Bockris, J. Electrochem. Soc. 116, 1503 (1969)

    Article  CAS  Google Scholar 

  28. W. He, K. Wen, Y. Niu, Introduction to oriented-attachment growth mechanism, in Nanocrystals from Oriented-Attachment for Energy Applications, ed. by W. He, K. Wen, Y. Niu (Springer, Cham, 2018), pp. 1–13

    Chapter  Google Scholar 

  29. P. Danwanichakul, T. Suwatthanarak, C. Suwanvisith, D. Danwanichakul, J. Nanosci. 2016, 6 (2016)

    Article  Google Scholar 

  30. E. Cottancin, C. Langlois, J. Lermé, M. Broyer, M.-A. Lebeault, M. Pellarin, Phys. Chem. Chem. Phys. 16(12), 5763 (2014)

    Article  CAS  Google Scholar 

  31. A. Alqudami, S. Annapoorni, S.M. Shivaprasad, J. Nanopart. Res. 10, 1027 (2008)

    Article  CAS  Google Scholar 

  32. M. Kumar, S. Pasha, S. Krishna, D.A. Singh, P. Kumar, B. Gupta, G. Gupta, Dalton. Trans. 40, 12454 (2014)

    Google Scholar 

  33. J. Zheng, R.M. Dickson, J. Am. Chem. Soc. 124, 13982 (2002)

    Article  CAS  Google Scholar 

  34. D. Yin, L. Pei, Z. Liu, X. Yang, X. Zhang, W. Xiang, Funct. Mater. Lett. 07, 1450023 (2014)

    Google Scholar 

  35. N. Dhenadhayalan, C. Selvaraju, J. Phys. Chem. B 116, 4908 (2012)

    Article  CAS  Google Scholar 

  36. J.S. Mohanty, P.L. Xavier, K. Chaudhari, M. Bootharaju, N. Goswami, S. Pal, T. Pradeep, Nanoscale 4, 4255 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST-PURSE GNR Instrumentation facility for thermal, UV–Vis and PL analyses. Department of Chemical engineering, IITM, is acknowledged for SEM analysis. Materials Research Centre, MNIT Jaipur, is acknowledged for XPS analysis. The authors profusely thank Dr. C. Selvaraju, National Centre for Ultrafast Processes, University of Madras for help in taking decay life-time and for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumainathan Stephen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirugnanasambandan, S., Manogaran, R., Thirugalathi Anbalagan, R. et al. Plasmon induced photoluminescent emission from PED Ag–In alloy. Res Chem Intermed 46, 3383–3396 (2020). https://doi.org/10.1007/s11164-020-04149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04149-0

Keywords

Navigation