Skip to main content
Log in

Enzymes of aldoxime–nitrile pathway for organic synthesis

  • Mini Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Aldoxime–nitrile pathway is one of the important routes of carbon and nitrogen metabolism in many life forms and a key interface for plant–microbe interactions. This pathway starts with transformation of amino acids to aldoximes, which are converted to nitriles and the later are ultimately hydrolyzed to acids and ammonia. Understanding and engineering of the enzymes involved in this pathway viz. cytochrome P450/CYP79, aldoxime dehydratase, nitrilase, nitrile hydratase, amidase and hydroxynitrile lyase, presents unprecedented opportunities in biocatalysis and green chemistry. Co-expressing these enzymes in prokaryotic and eukaryotic microbial hosts and tailoring their properties i.e. activity, specificity, stability and enantioselectivity may lead to develop sustainable bioprocesses for the synthesis of industrially important nitriles, amides and acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asif M, Bhalla TC (2016) Hydroxynitrile lyase of wild Apricot (Prunus armeniaca L.): purification, characterization and application in synthesis of enantiopure mandelonitrile. Catal Lett 46:1118–1127

    Article  Google Scholar 

  • Bak S, Kahn RA, Nielsen HL, Moller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36(3):393–405

    Article  CAS  Google Scholar 

  • Bak S, Olsen CE, Halkier BA, Møller BL (2000) Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol 123(4):1437–1448

    Article  CAS  Google Scholar 

  • Bar-Even A, Tawfik DS (2014) Engineering specialized metabolic pathways—is there a room for enzyme improvements? Curr Opin Biotechnol 24:310–319

    Article  Google Scholar 

  • Baum S, van Rantwijk F, Stolz A (2012) Application of a recombinant Escherichia coli whole-cell catalyst expressing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide. Adv Synth Catal 354:113–122

    Article  CAS  Google Scholar 

  • Betke T, Rommelmann P, Oike K, Asano Y, Grçger H (2017) Cyanide-free and broadly applicable enantioselective synthetic platform for chiral nitriles through a biocatalytic approach. Angew Chem Int Ed 56:12361–12366

    Article  CAS  Google Scholar 

  • Bhalla TC, Kumar V, Bhatia SK (2014) Hydroxy acids: production and applications. In: Singh RS, Pandey A, Larroche C (eds) Advances in industrial biotechnology. IK International Publishing House Pvt. Ltd. India, pp 56–76

  • Bhalla TC, Kumar V, Kumar V (2017) Microbial remediation of cyanides. In: Rathoure AK (ed) Bioremediation current research and applications. IK International Publishing House Pvt. Ltd. India, pp 88–110

  • Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2705-7

    Google Scholar 

  • Bornscheuer UT, Huisman G, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  Google Scholar 

  • Celenza JL (2001) Metabolism of tyrosine and tryptophan-new genes for old pathways. Curr Opin Plant Biol 3:234–240

    Article  Google Scholar 

  • Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

    CAS  Google Scholar 

  • Chmura A, Rustler S, Paravidino M, Rantwijk F, Stolz A, Sheldon RA (2013) The combi-CLEA approach: enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron Asymmetry 24:1225–1232

    Article  CAS  Google Scholar 

  • Gallego FL, Dannert CS (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14(2):174–183

    Article  Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142

    Article  CAS  Google Scholar 

  • Gong JS, Shi JS, Lu ZM, Zhou ZM, Xu ZH (2017) Nitrile converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insight and promises. Crit Rev Biotechnol 23:1–13

    Google Scholar 

  • Hashimoto Y, Hosaka H, Oinuma K, Goda M, Higashibata H, Kobayashi M (2005) Nitrile pathway involving acyl-CoA synthetase. J Biol Chem 280:8660–8667

    Article  CAS  Google Scholar 

  • Howden AJM, Preston GM (2009) Nitrilase enzymes and their role in plant-microbe interactions. Microb Biotechnol 2:441–451

    Article  CAS  Google Scholar 

  • Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG (2015) The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol 15:128

    Article  Google Scholar 

  • Janowitz T, Trompetter I, Piotrowski M (2009) Evolution of nitrilases in glucosinolate-containing plants. Phytochemistry 70:1680–1686

    Article  CAS  Google Scholar 

  • Jiang S, Zhang L, Yao Z, Gao B, Wang H, Maob X, Wei D (2017) Switching a nitrilase from Syechocystis sp. PCC6803 to a nitrile hydratase by rationally regulating reaction pathways. Catal Sci Technol. https://doi.org/10.1039/c7cy00060j

    Google Scholar 

  • Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 70:92–101

    Article  CAS  Google Scholar 

  • Kato Y, Ooi R, Asano Y (1999) A new enzymatic method of nitrile synthesis by Rhodococcus sp. strain YH3-31. J Mol Catal B Enzymatic 6:249–256

    Article  CAS  Google Scholar 

  • Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000a) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809

    Article  CAS  Google Scholar 

  • Kato Y, Ooi R, Asano Y (2000b) Distribution of aldoxime dehydratase in microorganisms. Appl Environ Microbiol 66(6):2290–2296

    Article  CAS  Google Scholar 

  • Kato Y, Yoshida S, Asano Y (2005) Polymerase chain reaction for identification of aldoxime dehydratase in aldoxime- or nitrile-degrading microorganism. FEMS Microbiol Lett 246:243–249

    Article  CAS  Google Scholar 

  • Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599

    Article  CAS  Google Scholar 

  • Kriechbaumer V, Park WJ, Gierl A, Glawischnig E (2006) Auxin biosynthesis in maize. Plant Biol 8(3):334–339

    Article  CAS  Google Scholar 

  • Lanfranchi E, Sheldon RA (2013) Recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Patents Biotechnol 7:197–206

    Article  CAS  Google Scholar 

  • Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereo-specific biosynthesis of (R)-(−)-mandelic acid. J Agric Food Chem 62:4685–4694

    Article  CAS  Google Scholar 

  • Luck K, Jia Q, Huber M, Handrick V, Wong GK, Nelson DR, Chen F, Gershenzon J, Köllner TG (2017) CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Mol Biol 95:169–180

    Article  CAS  Google Scholar 

  • Mahadevan S (1973) Role of oximes in nitrogen metabolism in plants. Ann Rev Plant Physiol 24:69–88

    Article  CAS  Google Scholar 

  • Martinkova L, Kren V (2010) Biotransformations with nitrilases. Curr Opinion Chem Biol 14:130–137

    Article  CAS  Google Scholar 

  • Martinkova L, Vesela AB, Rinagelova A, Chmatal M (2015) Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide. Appl Microbiol Biotechnol 99:8875–8882

    Article  CAS  Google Scholar 

  • Martínková L, Rucka L, Nesvera J, Patek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33:8

    Article  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron: Asymmetry 17:320–323

    Article  CAS  Google Scholar 

  • Mathew S, Nadarajan SP, Sundaramoorthy U, Jeon H, Chung T, Yun H (2017) Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol Lett 39(4):535–543

    Article  CAS  Google Scholar 

  • Metzner R, Okazaki S, Asano Y, Groger H (2014) Cyanide-free enantioselective synthesis of nitriles: synthetic proof of a biocatalytic concept and mechanistic insights. Chem Cat Chem 6:3105–3109

    CAS  Google Scholar 

  • Miki Y, Asano Y (2014) Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Appl Environ Microbiol 80:6828–6836

    Article  Google Scholar 

  • Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22(3):279–295

    Article  CAS  Google Scholar 

  • Nomura J, Hashimoto H, Ohtac T, Hashimotoa Y, Wadaa K, Naruta Y, Oinumaa K, Kobayashi M (2012) Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. PNAS 110:2810–2815

    Article  Google Scholar 

  • Oinuma K, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi M (2003) Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphisB23. J Biol Chem 278:29600–29608

    Article  CAS  Google Scholar 

  • Padhi SK (2017) Modern approaches to discovering new hydroxynitrile lyases for biocatalysis. Chembiochem 18(2):152–160

    Article  CAS  Google Scholar 

  • Petrickova A, Vesela AB, Kaplan O, Kubac D, Uhnakova B, Malandra A, Felsberg J, Rinagelova A, Weyrauch P et al (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. App Microbiol Biotechnol 93:1553–1561

    Article  CAS  Google Scholar 

  • Pinakoulaki E, Koutsoupakis C, Sawai H, Pavlou A, Kato Y, Asano Y, Aono S (2011) Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon nitrogen triple bond. J Phy Chem B 115:13012–13018

    Article  CAS  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Article  CAS  Google Scholar 

  • Rantwijka FV, Stolz A (2015) Enzymatic cascade synthesis of (S)-2-hydroxycarboxylic amides and acids: cascade reactions employing a hydroxynitrile lyase, nitrile-converting enzymes and an amidase. J Mol Catal B Enzymatic 114:25–30

    Article  Google Scholar 

  • Reetz MT (2016) What are the limitations of enzymes in synthetic organic chemistry? Chem Rec 16:2449–2459

    Article  CAS  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785. https://doi.org/10.3389/fmicb.2016.01785

    Article  Google Scholar 

  • Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell JD, Glieder A, Winkler M (2010) Directed evolution of Alcaligenes faecalis nitrilase. Enzym Microb Technol 47:140–146

    Article  CAS  Google Scholar 

  • Sharma M, Sharma NN, Bhalla TC (2005) Hydroxynitrile lyases: at the interface of biology and chemistry. Enz Microb Technol 37:279–294

    Article  CAS  Google Scholar 

  • Sharma M, Sharma NN, Bhalla TC (2009) Amidases: versatile enzymes in nature. Rev Environ Sci Biotechnol 8:343–366

    Article  CAS  Google Scholar 

  • Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interface 13:20160087

    Article  Google Scholar 

  • Shin JH, Lee SY (2014) Metabolic engineering of microorganisms for the production of l-arginine and its derivatives. Microb Cell Fact 13:166

    Article  Google Scholar 

  • Sosedov O, Stolz A (2015) Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microb Biotechnol 99:2623–2635

    Article  CAS  Google Scholar 

  • Sosedov O, Baum S, Burger S, Kiziak C, Stolz A, Bu S, Matzer K (2010) Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol 76:3668–3674

    Article  CAS  Google Scholar 

  • Sun Z, Zhang K, Chen C, Wu Y, Tang Y, Georgiev MI, Zhang X, Lin M, Zhou M (2018) Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Appl Microbiol Biotechnol 102:9–16

    Article  CAS  Google Scholar 

  • Weeks AM, Chang MCY (2011) Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 50(24):5404–5418

    Article  CAS  Google Scholar 

  • Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066

    Article  CAS  Google Scholar 

  • Yamaguchi T, Asano Y (2015) Complete genome sequence of an aldoxime degrader, Bacillus sp OxB-1. Genome Announc 3(1):e00025-15

    Article  Google Scholar 

  • Yasukawa K, Asano Y (2012) Enzymatic synthesis of chiral phenylalanine derivatives by a dynamic kinetic resolution of corresponding amide and nitrile substrates with a multi-enzyme system. Adv Synth Catal 354:3327–3332

    Article  CAS  Google Scholar 

  • Yasukawa K, Hasemi R, Asano Y (2011) Dynamic kinetic resolution of α-aminonitriles to form chiral α-amino acids. Adv Synth Catal 353:2328–2332

    Article  CAS  Google Scholar 

  • Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120

    Article  CAS  Google Scholar 

  • Zagrobelny M, Moller L (2011) Cynogenic glycosides in chemical warfare between plants and insects: the burnet moth-birds foot trefoil model system. Phytochem 72:1585–1592

    Article  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Moller BL (2008) Cyanogenesis in plants and arthropods. J Phytochem 69:1457–1468

    Article  CAS  Google Scholar 

  • Zhang L, Yin B, Wang C, Jiang S, Wang H, Yuan YA, Wei D (2014a) Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J Struct Biol 188:93–101

    Article  CAS  Google Scholar 

  • Zhang XH, Liu ZQ, Xue YP, Zheng YG (2014b) Activity improvement of a regioselective nitrilase from Acidovorax facilis and its application in the production of 1-(cyanocyclohexyl) acetic acid. Process Biochem 49:2141–2148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to University Grants Commission (UGC) New Delhi, India for providing financial assistance in the form of Senior Research Fellowship to Dr. Vijay Kumar. The computational facility availed at Sub-Distributed Information Centre (SDIC), Himachal Pradesh University, Shimla, is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, T.C., Kumar, V. & Kumar, V. Enzymes of aldoxime–nitrile pathway for organic synthesis. Rev Environ Sci Biotechnol 17, 229–239 (2018). https://doi.org/10.1007/s11157-018-9467-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9467-0

Keywords

Navigation