Skip to main content
Log in

Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of different amino acid substitutions in the nitrilase from Pseudomonas fluorescens EBC191 (NitA) on the catalytical activity and the ability to form amides was investigated. The enzyme variant Glu137Ala was constructed because glutamate residues homologous to Glu137 are highly conserved among different members of the nitrilase superfamily and it has been suggested that these residues are indispensable for the hydrolysis of amides by enzymes belonging to the nitrilase superfamily. The enzyme variant Glu137Ala demonstrated less than 1 % of the wild-type activity but was still enzymatically competent to convert mandelonitrile to mandelic acid and mandeloamide. The tryptophan residue at position 188, which was previously identified as important for the amide forming capacity of the nitrilase, was exchanged by saturation mutagenesis for all other proteinogenic amino acids. Surprisingly, 18 of these 19 exchanges resulted in an increased formation of mandeloamide from (R,S)-mandelonitrile and three of these variants converted (R,S)-mandelonitrile to more than 90 % of mandeloamide. Furthermore, these modifications also resulted in a reversal of stereoselectivity and these variants formed in contrast to the wild-type enzyme and almost all other known nitrilases preferentially (S)-mandelic acid. The synthetic potential of one of these variants was demonstrated by the construction of recombinant E. coli clones which simultaneously expressed the nitrilase variant and the (S)-hydroxynitrile lyase (oxynitrilase) from the cassava plant (Manihot esculenta). These “bienzymatic catalysts” converted benzaldehyde plus cyanide almost exclusively to (S)-mandeloamide and did not show any inhibition in the presence of cyanide in concentrations up to 200 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade J, Karmali A, Carrondo MA, Frazão C (2007) Structure of amidase from Pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state. J Biol Chem 282:19598–19605

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Kaul P, Banerjee UC (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418

    Article  CAS  PubMed  Google Scholar 

  • Barglow KT, Saikatendu KS, Bracey MH, Huey R, Morris GM, Olson AJ, Stevens RC, Cravatt BF (2008) Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes. Biochemistry 47:13514–13523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer R, Hirrlinger B, Layh N, Stolz A, Knackmuss HJ (1994) Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R, S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7

    Article  CAS  Google Scholar 

  • Baum S, Williamson DS, Sewell T, Stolz A (2012) Conversion of sterically demanding α,-α-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 78:48–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandão PFB, Verseck S, Syldatk C (2004) Bioconversion of D, L-tert-leucine nitrile to D-tert-leucine by recombinant cells expressing nitrile hydratase and D-selective amidase. Eng Life Sci 4:547–556

    Article  Google Scholar 

  • Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 12:775–782

    Article  CAS  PubMed  Google Scholar 

  • Chmura A (2010) A sustainable “two-enzyme, one-pot procedure” for the synthesis of enantiomerically pure α-hydroxy scids. PhD thesis, TU Delft, The Netherlands

  • Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL Jr, Lindermann RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9:411–420

    Article  CAS  Google Scholar 

  • Coppola GM, Schuster HF (1997) α-Hydroxy acids in enantioselective syntheses. VCH, Weinheim

    Book  Google Scholar 

  • DiCosimo R (2007) Nitrilases and nitrile hydratases. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, Boca Raton, pp 1–27

    Google Scholar 

  • Effenberger F, Osswald S (2001) Enantioselective hydrolysis of (RS)-2-fluoroacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asymmetry 12:279–285

    Article  CAS  Google Scholar 

  • Fallon RD, Stieglitz B, Turner I Jr (1997) A Pseudomonas putida capable of stereoselective hydrolysis of nitriles. Appl Microbiol Biotechnol 47:156–161

    Article  CAS  Google Scholar 

  • Gerasimova T, Novikov A, Osswald S, Yanenko A (2004) Screening, characterization and application of cyanide-resistant nitrile hydratases. Eng Life Sci 4:543–546

    Article  CAS  Google Scholar 

  • Gröger H (2003) Catalytic enantioselective Strecker reactions and analogous syntheses. Chem Rev 103:2795–2827

    Article  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Harper DB (1977) Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) NCIB 11216. Biochem J 165:309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation oft he benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—insights into degradation pathways, persistent metabolites and involved degraders. Environ Pollut 154:155–168

    Article  CAS  PubMed  Google Scholar 

  • Huebner K, Saldivar JC, Sun J, Shibata H, Druck T (2011) Hits, Fhits and Nits: beyond enzymatic function. Adv Enzym Regul 51:208–217

    Article  CAS  Google Scholar 

  • Hung CL, Liu JH, Chiu WC, Huang S-W, Hwang JK, Wang WC (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J Biol Chem 282:12220–12230

    Article  CAS  PubMed  Google Scholar 

  • Kimani SW, Agarkar VB, Cowan DA, Sayed MFR, Sewell BT (2007) Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallogr D Biol Crystallogr 63:1048–1058

    Article  CAS  PubMed  Google Scholar 

  • Kiziak C, Stolz A (2009) Identification of amino acid residues which are responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC 191. Appl Environ Microbiol 75:5592–5599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648

    Article  CAS  PubMed  Google Scholar 

  • Kiziak C, Klein J, Stolz A (2007) Influence of different carboxyterminal mutations on the substrate-, reaction-, and enantiospecifity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Eng Design Self 20:385–396

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lin ZJ, Zheng RC, Wang YJ, Zheng YG, Shen YC (2012) Enzymatic production of 2-amino-2,3-dimethylbutyramide by cyanide-resistant nitrile hydratase. J Ind Microbiol Biotechnol 39:133–141

    Article  PubMed  Google Scholar 

  • Martinková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  PubMed  Google Scholar 

  • Martinková L, Mylerová V (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1279–1295

    Article  Google Scholar 

  • Nagasawa T, Matsuyama A (2002) Method for producing amide compounds. European Patent EP1266962

  • Nagasawa T, Takeuchi K, Yamada H (1991) Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcus rhodochrous J1. Eur J Biochem 196:581–589

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8:729–739

    Article  CAS  PubMed  Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B Enzym 24–25:89–98

    Article  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2001/2/1/reviews/0001

  • Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Crove CM, Brenner C (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit teramer binding two Fhit dimers. Curr Biol 10:907–917

    Article  CAS  PubMed  Google Scholar 

  • Petříčková A, Sosedov O, Baum S, Stolz A, Martínková L (2012) Influence of point mutations near the active site on catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B Enzym 77:74–80

    Article  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Article  CAS  PubMed  Google Scholar 

  • Prepechalová I, Martinková L, Stolz A, Ovesná M, Bezouska K, Kren V (2001) Purification and characterization of Rhodococcus equi A4 nitrile hydratase that enantioselectively hydrates substituted 2-phenylpropionitriles. Appl Microbiol Biotechnol 55:150–156

    Article  PubMed  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rustler S, Müller A, Windeisen V, Chmura A, Fernandes BCM, Kiziak C, Stolz A (2007) Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191. Enzym Microb Technol 40:598–606

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS (2006) Nitrilase and its application as “green” catalyst. Chem Biodivers 3:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Martínez-Rodríguez S (2011) Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol 77:5761–5769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sosedov O, Stolz A (2014) Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol 98:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A (2009) Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandeloamide from benzaldehyde and cyanide. Adv Synth Catal 351:1531–1538

    Article  CAS  Google Scholar 

  • Sosedov O, Baum S, Bürger S, Matzer K, Kiziak C, Stolz A (2010) Construction and application of variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191 which form increased amounts of acids or amides. Appl Environ Microbiol 76:3668–3674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevenson DE, Feng R, Storer AC (1990) Detection of covalent enzyme-substrate complexes of nitrilase by ion-spray mass spectroscopy. FEBS Lett 277:112–114

    Article  CAS  PubMed  Google Scholar 

  • Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, L-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 6:33–36

    CAS  Google Scholar 

  • Thuku RN, Brady D, Benedik SBT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727

    Article  CAS  PubMed  Google Scholar 

  • van Pelt S, van Rantwijk F, Sheldon RA (2009) Synthesis of aliphatic (S)-α-hydroxycarboxylic amides using a one-pot bienzymatic cascade of immobilized oxynitrilase and nitrile hydratase. Adv Synth Catal 351:397–404

    Article  Google Scholar 

  • Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber BW, Kimani SW, Varsani A, Cowan DA, Hunter R, Venter GA, Gumbart JC, Sewell BT (2013) The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning. J Biol Chem 288:28514–28523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto K, Oishi K, Fujimatsu I, Komatsu KI (1991) Production of R-(−)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stolz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosedov, O., Stolz, A. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microbiol Biotechnol 99, 2623–2635 (2015). https://doi.org/10.1007/s00253-014-6061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6061-4

Keywords

Navigation