Skip to main content
Log in

Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) is extensively used in plastic products, and its accumulation in the environment has become a global concern. Being a non-degradable pollutant, a tremendous quantity of PET-bearing plastic materials have already accumulated in the environment, posing severe challenges towards the existence of various endangered species and consequently threatening the ecosystem and biodiversity. While conventional recycling and remediation methodologies so far have been ineffective in formulating a “green” degradation protocol, the bioremediation strategies—though nascent—are exhibiting greater promises towards achieving the target. Very recently, a novel bacterial strain called Ideonella sakaiensis 201-F6 has been discovered that produces a couple of unique enzymes, polyethylene terephthalate hydrolase and mono(2-hydroxyethyl) terephthalic acid hydrolase, enabling the bacteria to utilize PET as their sole carbon source. With a detailed understanding of the protein structure of these enzymes, possibilities for their optimization as PET degrading agents have started to emerge. In both proteins, several amino acids have been identified that are not only instrumental for catalysis but also provide avenues for the applications of genetic engineering strategies to improve the catalytic efficiencies of the enzymes. In this review, we focused on such unique structural features of these two enzymes and discussed their potential as molecular tools that can essentially become instrumental towards the development of sustainable bioremediation strategies.

Graphical abstract

Degradation PET by wild type and genetically engineered PETase and MHETase. Effect of the MHETase-PETase chimeric protein and PETase expressed on the surface of yeast cells on PET degradation is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Gomes, T. S., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2019). Life cycle assessment of polyethylene terephthalate packaging: An overview. Journal of Polymers and the Environment, 27(3), 533–548. https://doi.org/10.1007/s10924-019-01375-5.

    Article  CAS  Google Scholar 

  2. Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research International, 16(3), 278–286. https://doi.org/10.1007/s11356-009-0107-7.

    Article  CAS  PubMed  Google Scholar 

  3. Sax, L. (2010). Polyethylene terephthalate may yield endocrine disruptors. Environmental Health Perspectives, 118(4), 445–448. https://doi.org/10.1289/ehp.0901253.

    Article  CAS  PubMed  Google Scholar 

  4. Pan, G., Hanaoka, T., Yoshimura, M., Zhang, S., Wang, P., Tsukino, H., Inoue, K., Nakazawa, H., Tsugane, S., & Takahashi, K. (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environmental Health Perspectives, 114(11), 1643–1648. https://doi.org/10.1289/ehp.9016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swan, S. H., Main, K. M., Liu, F., Stewart, S. L., Kruse, R. L., Calafat, A. M., … Study for Future Families Research Team. (2005). Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives, 113(8), 1056–1061. https://doi.org/10.1289/ehp.8100

  6. Godswill, A. C., & Godspel, A. C. (2019). Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). International Journal of Bioinformatics and Computational Biology, 4(2), 11–29.

    Google Scholar 

  7. Grün, F., & Blumberg, B. (2009). Endocrine disrupters as obesogens. Molecular and Cellular Endocrinology, 304(1–2), 19–29. https://doi.org/10.1016/j.mce.2009.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arvanitoyannis, I., & Bosnea, L. A. (2001). Recycling of polymeric materials used for food packaging: Current status and perspectives. Food Reviews International, 17(3), 291–346. https://doi.org/10.1081/FRI-100104703.

    Article  CAS  Google Scholar 

  9. K, R., L, D., & K, V. G. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management (New York, N.Y.), 69, 24–58. https://doi.org/10.1016/j.wasman.2017.07.044

  10. Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001.

    Article  CAS  Google Scholar 

  11. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

    Article  Google Scholar 

  12. Faroon, O., & Ruiz, P. (2016). Polychlorinated biphenyls: New evidence from the last decade. Toxicology and Industrial Health, 32(11), 1825–1847. https://doi.org/10.1177/0748233715587849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, K., Pant, P., & Yamashita, E. (2013). Using national household travel survey data for the assessment of transportation system vulnerabilities: Transportation Research Record. https://doi.org/10.3141/2376-09

  14. Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1), 4666. https://doi.org/10.1038/s41598-018-22939-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053.

    Article  CAS  Google Scholar 

  16. Gregory, M. R. (2009). Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2013–2025. https://doi.org/10.1098/rstb.2008.0265.

    Article  Google Scholar 

  17. Bakir, A., Rowland, S. J., & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), 2782–2789. https://doi.org/10.1016/j.marpolbul.2012.09.010.

    Article  CAS  PubMed  Google Scholar 

  18. Agamuthu, P., Mehran, S. B., Norkhairah, A., & Norkhairiyah, A. (2019). Marine debris: A review of impacts and global initiatives. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 37(10), 987–1002. https://doi.org/10.1177/0734242X19845041.

    Article  CAS  Google Scholar 

  19. Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., & Goffart, A. (2014). Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin, 79(1–2), 293–298. https://doi.org/10.1016/j.marpolbul.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  20. M’rabet, C., Yahia, O. K.-D., Couet, D., Gueroun, S. K. M., & Pringault, O. (2019). Consequences of a contaminant mixture of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), two plastic-derived chemicals, on the diversity of coastal phytoplankton. Marine Pollution Bulletin, 138, 385–396.

    Article  Google Scholar 

  21. Molino, C., Filippi, S., Stoppiello, G. A., Meschini, R., & Angeletti, D. (2019). In vitro evaluation of cytotoxic and genotoxic effects of Di(2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicology in Vitro, 56, 118–125. https://doi.org/10.1016/j.tiv.2019.01.017.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22. https://doi.org/10.1016/j.jenvman.2017.12.075.

    Article  CAS  PubMed  Google Scholar 

  23. Joutey, N. T., Bahafid, W., Sayel, H., & ElGhachtouli, N. (2013). Biodegradation: Involved microorganisms and genetically engineered microorganisms. Biodegradation - Life of Science. https://doi.org/10.5772/56194.

  24. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (New York, N.Y.), 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359.

    Article  CAS  Google Scholar 

  25. Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818. https://doi.org/10.1099/ijsem.0.001058.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359.

    Article  CAS  PubMed  Google Scholar 

  27. Iwagami, S. G., Yang, K., & Davies, J. (2000). Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. Strain 2065. Applied and Environmental Microbiology, 66(4), 1499–1508. https://doi.org/10.1128/AEM.66.4.1499-1508.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez, C. F., Taber, W. A., & Zeitoun, M. A. (1972). Biodegradation of ethylene glycol by a salt-requiring bacterium. Applied Microbiology, 24(6), 911–919.

    Article  CAS  Google Scholar 

  29. Kataoka, M., Sasaki, M., Hidalgo, A. R., Nakano, M., & Shimizu, S. (2001). Glycolic acid production using ethylene glycol-oxidizing microorganisms. Bioscience, Biotechnology, and Biochemistry, 65(10), 2265–2270. https://doi.org/10.1271/bbb.65.2265.

    Article  CAS  PubMed  Google Scholar 

  30. Clark, D. P., & Cronan, J. E. (2005). Two-carbon compounds and fatty acids as carbon sources. EcoSal Plus, 1(2). https://doi.org/10.1128/ecosalplus.3.4.4.

  31. Trifunović, D., Schuchmann, K., & Müller, V. (2016). Ethylene glycol metabolism in the acetogen Acetobacterium woodii. Journal of Bacteriology, 198(7), 1058–1065. https://doi.org/10.1128/JB.00942-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, C.-C., Han, X., Ko, T.-P., Liu, W., & Guo, R.-T. (2018). Structural studies reveal the molecular mechanism of PETase. The FEBS Journal, 285(20), 3717–3723. https://doi.org/10.1111/febs.14612.

    Article  CAS  PubMed  Google Scholar 

  33. Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., el Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E., & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350–E4357. https://doi.org/10.1073/pnas.1718804115.

    Article  CAS  Google Scholar 

  34. Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L. P., & Ramírez-Sarmiento, C. A. (2018). Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302–1312. https://doi.org/10.1016/j.bpj.2018.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sulaiman, S., You, D.-J., Kanaya, E., Koga, Y., & Kanaya, S. (2014). Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry, 53(11), 1858–1869. https://doi.org/10.1021/bi401561p.

    Article  CAS  PubMed  Google Scholar 

  36. Roth, C., Wei, R., Oeser, T., Then, J., Föllner, C., Zimmermann, W., & Sträter, N. (2014). Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Applied Microbiology and Biotechnology, 98(18), 7815–7823. https://doi.org/10.1007/s00253-014-5672-0.

    Article  CAS  PubMed  Google Scholar 

  37. Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H.-Y., Shin, T. J., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9(1), 382. https://doi.org/10.1038/s41467-018-02881-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palm, G. J., Reisky, L., Böttcher, D., Müller, H., Michels, E. A. P., Walczak, M. C., Berndt, L., Weiss, M. S., Bornscheuer, U. T., & Weber, G. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717. https://doi.org/10.1038/s41467-019-09326-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knott, B. C., Erickson, E., Allen, M. D., Gado, J. E., Graham, R., Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J. J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C. J., Copié, V., Payne, C. M., Woodcock, H. L., Donohoe, B. S., Beckham, G. T., & McGeehan, J. E. (2020). Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences, 117(41), 25476–25485. https://doi.org/10.1073/pnas.2006753117.

    Article  CAS  Google Scholar 

  40. Suzuki, K., Hori, A., Kawamoto, K., Thangudu, R. R., Ishida, T., Igarashi, K., Samejima, M., Yamada, C., Arakawa, T., Wakagi, T., Koseki, T., & Fushinobu, S. (2014). Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Proteins, 82(10), 2857–2867. https://doi.org/10.1002/prot.24649.

    Article  CAS  PubMed  Google Scholar 

  41. Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., & Yuan, Y. (2018). Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4(6), 888–893. https://doi.org/10.1016/j.eng.2018.09.007.

    Article  CAS  Google Scholar 

  42. Liu, B., He, L., Wang, L., Li, T., Li, C., Liu, H., Luo, Y., & Bao, R. (2018). Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. Chembiochem: A European Journal of Chemical Biology, 19(14), 1471–1475. https://doi.org/10.1002/cbic.201800097.

    Article  CAS  PubMed  Google Scholar 

  43. Wei, R., Song, C., Gräsing, D., Schneider, T., Bielytskyi, P., Böttcher, D., Matysik, J., Bornscheuer, U. T., & Zimmermann, W. (2019). Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nature Communications, 10(1), 5581. https://doi.org/10.1038/s41467-019-13492-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seo, H., Cho, I. J., Joo, S., Son, H. F., Sagong, H.-Y., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2019). Reply to “Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation”. Nature Communications, 10(1), 5582. https://doi.org/10.1038/s41467-019-13493-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Son, H. F., Cho, I. J., Joo, S., Seo, H., Sagong, H.-Y., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9(4), 3519–3526. https://doi.org/10.1021/acscatal.9b00568.

    Article  CAS  Google Scholar 

  46. Huang, X., Cao, L., Qin, Z., Li, S., Kong, W., & Liu, Y. (2018). Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by Its native signal peptide. Journal of Agricultural and Food Chemistry, 66(50), 13217–13227. https://doi.org/10.1021/acs.jafc.8b05038.

    Article  CAS  PubMed  Google Scholar 

  47. Seo, H., Kim, S., Son, H. F., Sagong, H.-Y., Joo, S., & Kim, K.-J. (2019). Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250–255. https://doi.org/10.1016/j.bbrc.2018.11.087.

    Article  CAS  PubMed  Google Scholar 

  48. Moog, D., Schmitt, J., Senger, J., Zarzycki, J., Rexer, K.-H., Linne, U., Erb, T., & Maier, U. G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18(1), 171. https://doi.org/10.1186/s12934-019-1220-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sagong, H.-Y., Seo, H., Kim, T., Son, H. F., Joo, S., Lee, S. H., Kim, S., Woo, J. S., Hwang, S. Y., & Kim, K.-J. (2020). Decomposition of the PET Film by MHETase using exo-PETase function. ACS Catalysis, 10(8), 4805–4812. https://doi.org/10.1021/acscatal.9b05604.

    Article  CAS  Google Scholar 

  50. Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593. https://doi.org/10.1111/jam.13472.

    Article  CAS  PubMed  Google Scholar 

  51. Ibiene, A. A., Stanley, H. O., & Immanuel, O. M. (2013). Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger Delta Mangrove Swamp. Nigerian Journal of Biotechnology, 26, 68–78. https://doi.org/10.4314/njb.v26i1.

    Article  Google Scholar 

  52. Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3. Biotech, 5(1), 81–86. https://doi.org/10.1007/s13205-014-0205-1.

    Article  Google Scholar 

  53. Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67.

    Article  CAS  Google Scholar 

  54. Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x.

    Article  CAS  PubMed  Google Scholar 

  55. Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4.

    Article  CAS  PubMed  Google Scholar 

  56. Obradors, N., & Aguilar, J. (1991). Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology, 57(8), 2383–2388.

    Article  CAS  Google Scholar 

  57. Elbanna, K., Lütke-Eversloh, T., Jendrossek, D., Luftmann, H., & Steinbüchel, A. (2004). Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Archives of Microbiology, 182(2-3), 212–225. https://doi.org/10.1007/s00203-004-0715-z.

    Article  CAS  PubMed  Google Scholar 

  58. Ruiz, C., Main, T., Hilliard, N. P., & Howard, G. T. (1999). Purification and characterization of twopolyurethanase enzymes from Pseudomonas chlororaphis. International Biodeterioration & Biodegradation, 43(1), 43–47. https://doi.org/10.1016/S0964-8305(98)00067-5.

    Article  CAS  Google Scholar 

  59. Howard, G. T., & Blake, R. C. (1998). Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. International Biodeterioration & Biodegradation, 4(42), 213–220.

    Article  Google Scholar 

  60. Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of Polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3(4), 1–8. https://doi.org/10.4172/2155-6199.1000145.

    Article  CAS  Google Scholar 

  61. Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. Journal of Academia and Industrial Research, 16, 313–316.

    Google Scholar 

  62. Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Biodegradation of plastic waste using marine micro-organisms (pp. 195–201). https://doi.org/10.1007/978-981-15-0532-4_20

  63. Awasthi, S., Srivastava, N., Singh, T., Tiwary, D., & Mishra, P. K. (2017). Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech, 7(1), 73. https://doi.org/10.1007/s13205-017-0699-4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Brandon, A. M., Gao, S.-H., Tian, R., Ning, D., Yang, S.-S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301.

    Article  CAS  Google Scholar 

  65. Yang, J., Yang, Y., Wu, W.-M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a.

    Article  CAS  Google Scholar 

  66. Bombelli, P., Howe, C. J., & Bertocchini, F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology: CB, 27(8), R292–R293. https://doi.org/10.1016/j.cub.2017.02.060.

    Article  CAS  PubMed  Google Scholar 

  67. Kawai, F., Kawabata, T., & Oda, M. (2020). Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustainable Chemistry & Engineering, 8(24), 8894–8908. https://doi.org/10.1021/acssuschemeng.0c01638.

    Article  CAS  Google Scholar 

  68. Chen, Z., Wang, Y., Cheng, Y., Wang, X., Tong, S., Yang, H., & Wang, Z. (2020). Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. The Science of the Total Environment, 709, 136138. https://doi.org/10.1016/j.scitotenv.2019.136138.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India (Ref. ECR/2016/000898) to AR.

Funding

This work was supported by research grants from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India (Ref. ECR/2016/000898) to AR.

Author information

Authors and Affiliations

Authors

Contributions

WM collated and analyzed the data, prepared the figures, and drafted the manuscript; SM collated and analyzed the data, prepared the figures, and drafted the manuscript; SB conceptualized the work and prepared the manuscript; AR collated the data, prepared the figures, drafted the manuscript, and supervised the overall work. WM, SM, SB, and AR approved the submission of the manuscript to the journal.

Corresponding author

Correspondence to Amrita Roy.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(GIF 63318 kb)

ESM 2

(GIF 66410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, W., Maity, S., Bera, S. et al. Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes. Appl Biochem Biotechnol 193, 2699–2716 (2021). https://doi.org/10.1007/s12010-021-03562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03562-4

Keywords

Navigation