Skip to main content
Log in

Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Cobalamin is a unique metal complex coenzyme that contains the cobalt ion sitting in the centre of a planar tetrapyrrole ring (corrin ring). It is unique that its de novo synthesis appears to be restricted solely to some bacteria and archaea, and the biosynthesis of cobalamin represents the most complex biosynthetic pathways known in nature. Despite the fact that only a subset of prokaryotes is capable of synthesizing cobalamin, which is required by humans and other organisms for diverse metabolic processes. This active metal coenzyme plays an essential role as electron transfer mediator in reductive dechlorination of chlorinated organics. Therefore, the application of such biomimetic chemical in engineered treatment systems for remediation of water and soil contaminated with halogenated compounds has shown excellent significance. This review aims to provide a systematic introduction of cobalamin. Firstly, the biosynthesis of cobalamin is briefly described, and the strategies and tools that have been applied to increase microbial cobalamin production are reviewed. Then, the catalysis effect of cobalamin on reductive dehalogenation and the main decisive factors are discussed in detail. Also, the fundamental dehalogenation mechanisms are introduced. Finally, the key questions that need to be resolved in the future are point out, which include the field measurements, the mechanistic pathways of the reactions in the presence of more than one pollutants, the design and implementation of a technology that speeds up the cleavage of Co–C bond in reductant systems to guarantee the rapid regeneration of the reactive cobalamin species, and the lab-scale application of immobilized cobalamin rather than insoluble cobalamin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AdoCbl:

Adenosylcobalamin

MeCbl:

Methylcobalamin

CNCbl:

Cyanocobalamin

OHCbl:

Hydroxycobalamin

CT:

Carbon tetrachloride

DCM:

Dichloromethane

CF:

Chloroform

HCBD:

Hexachloro-1,3-butadiene

PCE:

Tetrachloroethene

TCE:

Trichlorethylene

cis-DCE:

cis-Dichloroethene

VC:

Vinyl chloride

TCA:

Trichloroethane

ZVMs:

Zero valent metal

PCB:

Polychlorinated biphenyl

PCA:

Pentachloroethane

DTT:

Dithiothreitol

TBBPA:

Tetrabromobisphenol A

CAHs:

Chlorinated aliphatic hydrocarbons

trans-DCE:

trans-1,2-Dichloroethylene

ΔE:

Standard reduction potentials (versus SHE and at pH 7)

References

  • Amir A, Lee W (2011) Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin B12. Chem Eng J 170(2–3):492–497

    Article  CAS  Google Scholar 

  • Amir A, Lee W (2012) Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin(III) by nano-mackinawite. J Hazard Mater 235–236:359–366

    Article  CAS  Google Scholar 

  • Assaf-Anid N, Lin KY (2002) Carbon tetrachloride reduction by Fe2+, S2−, and FeS with vitamin B12 as organic amendment. J Environ Eng 128(1):94–99

    Article  CAS  Google Scholar 

  • Assaf-Anid N, Nies L, Vogel TM (1992) Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl Environ Microbiol 58(3):1057–1060

    CAS  Google Scholar 

  • Assaf-Anid N, Hayes KF, Vogel TM (1994) Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ Sci Technol 28(2):246–252

    Article  CAS  Google Scholar 

  • Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environ Sci Technol 28(11):1942–1949

    Article  CAS  Google Scholar 

  • Biedendieck R, Malten M, Barg H, Bunk B, Martens JH, Deery E, Leech H, Warren MJ, Jahn D (2010) Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol 3(1):24–37

    Article  CAS  Google Scholar 

  • Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Muller G (1993) Parallels and decisive differences in vitamin-B12 biosyntheses. Angew Chem Int Ed 32(11):1651–1653

    Article  Google Scholar 

  • Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vuilhorgne M, Leeper FJ, Battersby AR (1995) Vitamin B12: how the problem of its biosynthesis was solved. Angew Chem Int Ed 34(4):383–411

    Article  CAS  Google Scholar 

  • Blaser HU, Halpern J (1980) Reactions of vitamin B12r with organic halides. J Am Chem Soc 102(5):1684–1689

    Article  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2009) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23

    Article  CAS  Google Scholar 

  • Bosma TNP, Cottaar FHM, Posthumus MA, Teunis CJ, Vanveldhulzen A, Schraa G, Zehnder AJB (1994) Comparison of reductive dechlorination of hexachloro-1,3-butadiene in rhine sediment and model systems with hydroxocobalamin. Environ Sci Technol 28(6):1124–1128

    Article  CAS  Google Scholar 

  • Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int J Food Microbiol 133(1–2):1–7

    Article  CAS  Google Scholar 

  • Burris DR, Delcomyn CA, Smith MH, Roberts AL (1996) Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ Sci Technol 30(10):3047–3052

    Article  CAS  Google Scholar 

  • Bykhovsky VY, Zaitseva NI, Eliseev AA (1998) Tetrapyrroles: diversity, biosynthesis, and biotechnology (review). Appl Biochem Microbiol 34(1):1–18

    Google Scholar 

  • Cheng X, Chen Peng WF, Li KT (2014) Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Appl Biochem Biotechnol 173(3):673–681

    Article  CAS  Google Scholar 

  • Chiliveri SR, Yeruva T, Panda SH, Linga VR (2010) Optimization of fermentation parameters for vitamin B12 production using Propionibacterium freudertreichii sub sp. shermanii OLP-5 by Taguchi method. J Pure Appl Microbiol 4(2):647–658

    CAS  Google Scholar 

  • Chiu PC, Reinhard M (1995) Metallocoenzyme-mediated reductive transformation of carbon tetrachloride in titanium(III) citrate aqueous solution. Environ Sci Technol 29(3):595–603

    Article  CAS  Google Scholar 

  • Chiu PC, Reinhard M (1996) Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ Sci Technol 30(6):1882–1889

    Article  CAS  Google Scholar 

  • Dai R, Chen X, Ma C, Xiang X, Li G (2016) Insoluble/immobilized redox mediators for catalyzing anaerobic bio-reduction of contaminants. Rev Environ Sci Biotechnol 15(3):379–409

    Article  CAS  Google Scholar 

  • Demain AL, Daniels HJ, Schnable L, White RF (1968) Specificity of the stimulatory effect of betaine on the vitamin B12 fermentation. Nature 220(5174):1324–1325

    Article  CAS  Google Scholar 

  • Dror I, Baram D, Berkowitz B (2005) Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ Sci Technol 39(5):1283–1290

    Article  CAS  Google Scholar 

  • Dror I, Jacov OM, Cortis A, Berkowitz B (2012) Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. ACS Appl Mater Interfaces 4(7):3416–3423

    Article  CAS  Google Scholar 

  • Eschenmoser A (1974) Organische Naturstoffsynthese heute Vitamin B12 als Beispiel. Sci Nat 61(12):513–525

    Article  CAS  Google Scholar 

  • Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Fact 16(1):15

    Article  CAS  Google Scholar 

  • Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9(12):1906–1911

    Article  CAS  Google Scholar 

  • Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25(4):715–722

    Article  CAS  Google Scholar 

  • Glod G, Angst W, Holliger C, Schwarzenbach RP (1997a) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environ Sci Technol 31(1):253–260

    Article  CAS  Google Scholar 

  • Glod G, Brodmann U, Angst W, Holliger C, Schwarzenbach RP (1997b) Cobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: reaction kinetics and mechanistic considerations. Environ Sci Technol 31(11):3154–3160

    Article  CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005a) Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 16(3):215–228

    Article  CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005b) Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89(5):539–550

    Article  CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2006) Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B-12 biosynthesis. Biodegradation 17(4):317–329

    Article  CAS  Google Scholar 

  • Gulati S, Brody LC, Banerjee R (1999) Posttranscriptional regulation of mammalian methionine synthase by B12. Biochem Biophys Res Commun 259(2):436–442

    Article  CAS  Google Scholar 

  • Habeck BD, Sublette KL (1995) Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin. Appl Biochem Biotechnol 51(1):747–759

    Article  Google Scholar 

  • Hajfarajollah H, Mokhtarani B, Mortaheb H, Afaghi A (2014) Vitamin B12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate. J Food Sci Technol 52:3273–3282

    Google Scholar 

  • Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65(10):4537–4542

    CAS  Google Scholar 

  • Hashsham SA, Scholze R, Freedman DL (1995) Cobalamin-enhanced anaerobic biotransformation of carbon-tetrachloride. Environ Sci Technol 29(11):2856–2863

    Article  CAS  Google Scholar 

  • Hazra AB, Han AW, Mehta AP, Mok KC, Osadchiy V, Begley TP, Taga ME (2015) Anaerobic biosynthesis of the lower ligand of vitamin B12. Proc of the Natl Acad Sci USA 112(34):10792–10797

    Article  CAS  Google Scholar 

  • Huang CC, Lo SL, Lien HL (2013) Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12 under reducing condition. Chem Eng J 219:311–318

    Article  CAS  Google Scholar 

  • Huang CC, Lo SL, Lien HL (2015) Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem Eng J 273:413–420

    Article  CAS  Google Scholar 

  • Jacobsen DW, Troxell LS, Brown KL (1984) Catalysis of thiol oxidation by cobalamins and cobinamides: reaction-products and kinetics. Biochemistry 23(9):2017–2025

    Article  CAS  Google Scholar 

  • Jacobsen DW, Pezacka EH, Brown KL (1993) The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl-iodide: mechanistic implications. J Inorg Biochem 50(1):47–63

    Article  CAS  Google Scholar 

  • James DL, Cord-Ruwisch R, Schleheck D, Lee MJ, Manefield M (2008) Cyanocobalamin enables activated sludge bacteria to dechlorinate hexachloro-1,3-butadiene to nonchlorinated gases. Bioremediat J 12(4):177–184

    Article  CAS  Google Scholar 

  • Jeter RM, Olivera BM, Roth JR (1984) Salmonella-typhimurium synthesizes cobalamin (vitamin-B12) denovo under anaerobic growth-conditions. J Bacteriol 159(1):206–213

    CAS  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30(6):1533–1542

    Article  CAS  Google Scholar 

  • Kang J, Fang H, Dong H, Song W, Zhang D (2017) Purification and characterization of S-adenosyl-l-methionine: uroporphyrinogen III methyltransferase from Rhodobacter capsulatus SB1003. Chin J Biotechnol 33(1):55–67

    Google Scholar 

  • Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A, Vonwettstein D (1988) Transfer rna-glu as a cofactor in delta-aminolevulinate biosynthesis—steps that regulate chlorophyll synthesis. Trends Biochem Sci 13(4):139–143

    Article  CAS  Google Scholar 

  • Kiatpapan P, Murooka Y (2002) Genetic manipulation system in propionibacteria. J Biosci Bioeng 93(1):1–8

    Article  CAS  Google Scholar 

  • Kiatpapan P, Hashimoto Y, Nakamura H, Piao YZ, Ono H, Yamashita M, Murooka Y (2000) Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol 66(11):4688–4695

    Article  CAS  Google Scholar 

  • Kiatpapan P, Yamashita M, Kawaraichi N, Yasuda T, Murooka Y (2001) Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters. J Biosci Bioeng 92(5):459–465

    Article  CAS  Google Scholar 

  • Kim YH, Carraway ER (2002) Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs. Environ Technol 23(10):1135–1145

    Article  CAS  Google Scholar 

  • Kim S, Park T, Lee W (2015) Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition. J Environ Manag 151:378–385

    Article  CAS  Google Scholar 

  • Kliegman S, McNeill K (2008) Dechlorination of chloroethylenes by cob(I)alamin and cobalamin model complexes. Dalton Trans 32:4191–4201

    Article  CAS  Google Scholar 

  • Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S (2014) Coenzyme B-12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol J 9(12):1526–1535

    Article  CAS  Google Scholar 

  • Koenig J, Lee M, Manefield M (2014) Aliphatic organochlorine degradation in subsurface environments. Rev Environ Sci Biotechnol 14(1):49–71

    Article  CAS  Google Scholar 

  • Kosmider A, Bialas W, Kubiak P, Drozdzynska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresource Technol 105:128–133

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HP (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28(11):4908–4914

    Article  CAS  Google Scholar 

  • Kyung D, Amir A, Choi K, Lee W (2015) Reductive transformation of tetrachloroethene catalyzed by sulfide-cobalamin in nano-mackinawite suspension. Ind Eng Chem Res 54(5):1439–1446

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B (2002) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147–5154

    Article  CAS  Google Scholar 

  • Lesage S, Brown S, Millar K (1996) Vitamin B-12-catalyzed dechlorination of perchloroethylene present as residual DNAPL. Groundw Monit Remediat 16(4):76–85

    Article  CAS  Google Scholar 

  • Lewis TA, Morra MJ, Brown PD (1995) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium(III) reducing agents. Environ Sci Technol 30(1):292–300

    Article  Google Scholar 

  • Lewis TA, Morra MJ, Brown PD (1996) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium(III) reducing agents. Environ Sci Technol 30(1):292–300

    Article  CAS  Google Scholar 

  • Lexa D, Saveant JM (1983) The electrochemistry of vitamin-B12. Acc Chem Res 16(7):235–243

    Article  CAS  Google Scholar 

  • Li KT, Liu DH, Zhuang YP, Wang YH, Chu J, Zhang SL (2008a) Influence of Zn2+, Co2+ and dimethylbenzimidazole on vitamin B12 biosynthesis by Pseudomonas denitrificans. World J Microbiol Biotechnol 24(11):2525–2530

    Article  CAS  Google Scholar 

  • Li KT, Liu DH, Chu J, Wang YH, Zhuang YP, Zhang SL (2008b) An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioproc Biosyst Eng 31(6):605–610

    Article  CAS  Google Scholar 

  • Li KT, Liu DH, Li YL, Chu J, Wang YH, Zhuang YP, Zhang SL (2008c) Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technol 99(17):8516–8520

    Article  CAS  Google Scholar 

  • Li KT, Zhou J, Cheng X, Sj Wei (2012) Study on the dissolved oxygen control strategy in large-scale vitamin B12 fermentation by Pseudomonas denitrificans. J Chem Technol Biotechnol 87(12):1648–1653

    Article  CAS  Google Scholar 

  • Marks TS, Maule A (1992) The use of immobilized porphyrins and corrins to dehalogenate organochlorine pollutants. Appl Microbiol Biotechnol 38(3):413–416

    Article  CAS  Google Scholar 

  • Marks TS, Allpress JD, Maule A (1989) Dehalogenation of lindane by a variety of porphyrins and corrins. Appl Environ Microbiol 55(5):1258–1261

    CAS  Google Scholar 

  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56(3):482–507

    CAS  Google Scholar 

  • Moore SJ, Warren MJ (2012) The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans 40(3):581–586

    Article  CAS  Google Scholar 

  • Moore SJ, Mayer MJ, Biedendieck R, Deery E, Warren MJ (2014) Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. New Biotechnol 31(6):553–561

    Article  CAS  Google Scholar 

  • Murooka Y, Ishizaki T, Nimi O, Maekawa N (1986) Cloning and expression of a streptomyces cholesterol oxidase gene in streptomyces-lividans with plasmid-pij702. Appl Environ Microbiol 52(6):1382–1385

    CAS  Google Scholar 

  • Murooka Y, Piao Y, Kiatpapan P, Yamashita M (2005) Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview. Le Lait 85(1–2):9–22

    Article  CAS  Google Scholar 

  • Piao Y, Kiatpapan P, Yamashita M, Murooka Y (2004a) Effects of expression of hemA and hemB genes on production of porphyrin in Propionibacterium freudenreichii. Appl Environ Microbiol 70(12):7561–7566

    Article  CAS  Google Scholar 

  • Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004b) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98(3):167–173

    Article  CAS  Google Scholar 

  • Quesada-Chanto A, Afschar AS, Wagner F (1994) Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Microbiol Biotechnol 41(4):378–383

    CAS  Google Scholar 

  • Raux E, Lanois A, Warren MJ, Rambach A, Thermes C (1998) Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 335:159–166

    Article  CAS  Google Scholar 

  • Raux E, Schubert HL, Warren MJ (2000) Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mole Life Sci 57(13–14):1880–1893

    Article  CAS  Google Scholar 

  • Roessner CA, Scott AI (2006) Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 188(21):7331–7334

    Article  CAS  Google Scholar 

  • Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI (2002) Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148:1845–1853

    Article  CAS  Google Scholar 

  • Roth JR, Lawrence JG, Rubenfield M, Kiefferhiggins S, Church GM (1993) Characterization of the cobalamin (vitamin-B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175(11):3303–3316

    Article  CAS  Google Scholar 

  • Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181

    Article  CAS  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1–2):93–106

    Article  CAS  Google Scholar 

  • Schanke CA, Wackett LP (1992) Environmental reductive elimination-reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ Sci Technol 26(4):830–833

    Article  CAS  Google Scholar 

  • Schrauzer GN (1968) Organocobalt chemistry of vitamin B12 model compounds (cobaloximes). Acc Chem Res 1(4):97–103

    Article  CAS  Google Scholar 

  • Schrauzer GN, Deutsch E (1969) Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes(I), and related compounds. J Am Chem Soc 91(12):3341–3350

    Article  CAS  Google Scholar 

  • Scott AI, Roessner CA (2002) Biosynthesis of cobalamin (vitamin B12). Biochem Soc Trans 30:613–620

    Article  CAS  Google Scholar 

  • Shan H, Kurtz HD, Freedman D (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44(5):1317–1328

    Article  CAS  Google Scholar 

  • Shan H, Wang H, Yu R, Jacob P, Freedman DL (2014) Biodegradation of high concentrations of halomethanes by a fermentative enrichment culture. Amb Express 4. https://doi.org/10.1186/s13568-014-0048-5

  • Shimakoshi H, Tokunaga M, Baba T, Hisaeda Y (2004) Photochemical dechlorination of DDT catalyzed by a hydrophobic vitamin B12 and a photosensitizer under irradiation with visible light. Chem Commun (Camb) 16:1806–1807

    Article  CAS  Google Scholar 

  • Song H, Carraway ER (2008) Catalytic hydrodechlorination of chlorinated ethenes bly nanoscale zero-valent iron. Appl Catal B Environ 78(1–2):53–60

    Article  CAS  Google Scholar 

  • Sorel D, Lesage S, Brown S, Millar K (2001) Vitamin B12 and reduced titanium for remediation of residual chlorinated solvents: field experiment. Groundw Monit Remediat 21(4):140–148

    Article  CAS  Google Scholar 

  • Takano H, Hagiwara K, Ueda K (2015) Fundamental role of cobalamin biosynthesis in the developmental growth of Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol 99(5):2329–2337

    Article  CAS  Google Scholar 

  • Thirupathaiah Y, Swarupa Rani C, Sudhakara Reddy M, Venkateswar Rao L (2012) Effect of chemical and microbial vitamin B12 analogues on production of vitamin B12. World J Microbiol Biotechnol 28(5):2267–2271

    Article  CAS  Google Scholar 

  • Ukrainczyk L, Chibwe M, Pinnavaia TJ, Boyd SA (1995) Reductive dechlorination of carbon tetrachloride in water catalyzed by mineral-supported biomimetic cobalt macrocycles. Environ Sci Technol 29(2):439–445

    Article  CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Wang ZJ, Wang HY, Li YL, Chu J, Huang MZ, Zhuang YP, Zhang SL (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour Technol 101(8):2845–2852

    Article  CAS  Google Scholar 

  • Wang J, Fu Z, Liu G, Guo N, Lu H, Zhan Y (2013) Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB. Bioresour Technol 142:192–197

    Article  CAS  Google Scholar 

  • Wang P, Jiao Y, Liu S (2014) Novel fermentation process strengthening strategy for production of propionic acid and vitamin B12 by Propionibacterium freudenreichii. J Ind Microbiol Biotechnol 41(12):1811–1815

    Article  CAS  Google Scholar 

  • Wang P, Wang Y, Liu Y, Shi H, Su Z (2012) Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresour Technol 104:652–659

    Article  CAS  Google Scholar 

  • Warren MJ, Roessner C, Santander P, Scott A (1990) The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265(3):725–729

    Article  CAS  Google Scholar 

  • Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19(4):390–412

    Article  CAS  Google Scholar 

  • Workman DJ, Woods SL, Gorby YA, Fredrickson JK, Truex MJ (1997) Microbial reduction of vitamin B12 by Shewanella algae strain BrY with subsequent transformation of carbon tetrachloride. Environ Sci Technol 31(8):2292–2297

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y, Zhang F (2017) Application of zero valent iron coupling with biological process for wastewater treatment: a review. Rev Environ Sci Biotechnol 16:667–693

    Article  Google Scholar 

  • Ye KM, Shijo M, Jin S, Shimizu K (1996) Efficient production of vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration. J Ferment Bioeng 82(5):484–491

    Article  CAS  Google Scholar 

  • Yu Y, Zhu X, Shen Y, Yao H, Wang P, Ye K, Wang X, Gu Q (2015) Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch. Appl Microbiol Biotechnol 99(24):10481–10488

    Article  CAS  Google Scholar 

  • Zhu X, Wang X, Zhang C, Wang X, Gu Q (2015) A riboswitch sensor to determine vitamin B12 in fermented foods. Food Chem 175:523–528

    Article  CAS  Google Scholar 

  • Zou SW, Stensel HD, Ferguson JF (2000) Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin B12 content. Environ Sci Technol 34(9):1751–1757

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (51425802), and the Program of Shanghai Subject Chief Scientist (15XD1503400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinguang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Chen, Y. Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Rev Environ Sci Biotechnol 17, 259–284 (2018). https://doi.org/10.1007/s11157-018-9461-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9461-6

Keywords

Navigation