Skip to main content
Log in

Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The vitamin B12-dependent riboswitch is a crucial factor that regulates gene transcription to mediate the growth of and vitamin B12 synthesis by Propionibacterium freudenreichii. In this study, the effect of various wavelengths of light on the growth rate and vitamin B12 synthesis was studied. Red, green, and blue light-emitting diodes (LEDs) were selected, and a dark condition was used as the control. The microorganism growth rate was measured using a spectrophotometer and plate counting, while the vitamin B12 content was determined using an HPLC-based method. The optical density at 600 nm (OD600) values indicated that P. freudenreichii grew better under the continuous and discontinuous blue light conditions. Moreover, under the blue light condition, P. freudenreichii tended to have a higher growth rate (0.332 h−1) and vitamin B12 synthesis (ca. 10 μg/mL) in tofu wastewater than in dark conditions. HPLC analysis also showed that more methylcobalamin was produced under the blue light conditions than in the other conditions. The cbiB gene transcription results showed that blue light induced the synthesis of this vitamin B12 synthesis enzyme. Moreover, the results of inhibiting the expression of green fluorescent protein indicated that blue light removed the inhibition by the vitamin B12-dependent riboswitch. This method can be used to reduce fermentation time and produce more vitamin B12 in tofu wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Hussain W, Fareedi AA (1992) Photolysis of cyanocobalamin in aqueous solution. J pharmaceut biomed analysis 10(1):9–15

    Article  CAS  Google Scholar 

  • Allen LH (2010) Bioavailability of vitamin B12. Int J Vitam Nutr Res 80(4-5):330–335

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi H, Malik Z, Harth Y, Nitzan Y (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS immunol med mic 35(1):17–24

    Article  CAS  Google Scholar 

  • Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technol 148:373–8. doi:10.1016/j.biortech.2013.08.162

    Article  CAS  Google Scholar 

  • Belén F, Sánchez J, Hernández E, Auleda JM, Raventós M (2012) One option for the management of wastewater from tofu production: freeze concentration in a falling-film system. J food eng 110(3):364–373

    Article  Google Scholar 

  • Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Yun SJ, Beom HJ, Park HR, Lee JB (2011) Comparative study of the bactericidal effects of 5-aminolevulinic acid with blue and red light on Propionibacterium acnes. J dermatol 38(7):661–6. doi:10.1111/j.1346-8138.2010.01094.x

    Article  CAS  PubMed  Google Scholar 

  • Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. Chembiochem 9(12):1906–11. doi:10.1002/cbic.200700713

    Article  CAS  PubMed  Google Scholar 

  • Haddadin MSY, Abu Reesh IM, Haddadin FAS, Robinson RK (2001) Utilisation of tomato pomace as a substrate for the production of vitamin B12—a preliminary appraisal. Bioresource Technol 78(3):225–230. doi:10.1016/S0960-8524(01)00018-9

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technol 102(21):9884–9890. doi:10.1016/j.biortech.2011.08.016

    Article  Google Scholar 

  • Johnson JE Jr, Reyes FE, Polaski JT, Batey RT (2012) B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492(7427):133–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresource Technol 105(0):128–133. doi:10.1016/j.biortech.2011.11.074

    Article  Google Scholar 

  • Lee IH, Fredrickson AG, Tsuchiya HM (1974) Diauxic growth of Propionibacterium shermanii. Appl Microbiol Biotechnol 28:831–835

    CAS  Google Scholar 

  • Li KT, Liu DH, Li YL, Chu J, Wang YH, Zhuang YP, Zhang SL (2008) Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technol 99(17):8516–8520. doi:10.1016/j.biortech.2008.03.023

    Article  CAS  Google Scholar 

  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  PubMed  Google Scholar 

  • Mo H, Kariluoto S, Piironen V, Zhu Y, Sanders MG, Vincken JP, Nout MR (2013) Effect of soybean processing on content and bioaccessibility of folate, vitamin B12, and isoflavones in tofu and tempe. Food chem 141(3):2418–2425

    Article  CAS  PubMed  Google Scholar 

  • Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29(1):11–7

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elias-Arnanz M (2010) Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 108(18):7565–70

    Article  Google Scholar 

  • Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98(3):167–173. doi:10.1016/S1389-1723(04)00261-0

    Article  CAS  PubMed  Google Scholar 

  • Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Cur biol 18(4):255–9. doi:10.1016/j.cub.2008.01.061

    Article  CAS  Google Scholar 

  • Rucker BR, Suttie JW, McCormick BD, Machilin LJ (2001) Handbook of vitamin. Marcel Dekker, Inc., New York

    Google Scholar 

  • Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J (2008) The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiol 154(1):81–93

    Article  CAS  Google Scholar 

  • Schneider Z, Stroinski A (1987) Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine. Verlag Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Thirupathaiah Y, Swarupa Rani C, Sudhakara Reddy M, Venkateswar Rao L (2012) Effect of chemical and microbial vitamin B12 analogues on production of vitamin B12. World J Microbiol Biotechnol 28:2267–2271

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Wang HY, Li YL, Chu J, Huang MZ, Zhuang YP, Zhang SL (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource Technol 101(8):2845–2852. doi:10.1016/j.biortech.2009.10.048

    Article  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa N, Matsuura H, Shiho M, Kaya K, Watanabe MM (2012) Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresource Technol 109(0):304–307. doi:10.1016/j.biortech.2011.07.090

    Article  CAS  Google Scholar 

  • Zhu X, Bisping B (2010) Determination of vitamin B12 in fermented soybean products by high-performance liquid chromatography. J biotech 150:330

    Article  Google Scholar 

  • Zhu X, Wang X, Zhang C, Wang X, Gu Q (2015) A riboswitch sensor to determine vitamin B12 in fermented foods. Food Chem 175(0):523–528. doi:10.1016/j.foodchem.2014.11.163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National High Technology Research and Development Program (“863” Program) of China (2014AA022210), the Scientific Research Foundation of Zhejiang Gongshang University, the Scientific Research Foundation of Education Department of Zhejiang Province (1110kz0414207), the National Natural Science Foundation of China (No. 31360375), and Foundation of Food Science and Engineering, the most important Discipline of Zhejiang Province (No. 1110XJ3315023G).

Ethical statement

In this paper, there are no conflicts of interest, including financial and other relationships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Zhu.

Additional information

Yue Yu and Xuan Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhu, X., Shen, Y. et al. Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch. Appl Microbiol Biotechnol 99, 10481–10488 (2015). https://doi.org/10.1007/s00253-015-6958-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6958-6

Keywords

Navigation