Skip to main content
Log in

Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 μM) metabolism in a methanogenic sludge consortium (0.5 g VSSl-1) supplied with volatile fatty acids as electron donor (0.2 g CODl-1). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 μM, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin:CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin:CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQDS:

anthraquinone-2,6-disulfonate

COD:

chemical oxygen demand

CNB12:

cyanocobalamin

HOB12:

hydroxycobalamin

RF:

riboflavin

VFA:

volatile fatty acids

VSS:

volatile suspended solids

References

  • N Assafanid KF Hayes TM Vogel (1994) ArticleTitleReductive dechlorination of carbon-tetrachloride by cobalamin(Ii) in the presence of dithiothreitol–Mechanistic study, effect of redox potential and pH Environ. Sci. Technol. 28 246–252 Occurrence Handle1:CAS:528:DyaK2cXmtFGhtA%3D%3D

    CAS  Google Scholar 

  • N Assaf-Anid KY Lin (2002) ArticleTitleCarbon tetrachloride reduction by Fe2+, S2-, and FeS with vitamin B-12 as organic amendment J. Environ. Eng.-ASCE 128 94–99 Occurrence Handle1:CAS:528:DC%2BD38XkvFSgtA%3D%3D

    CAS  Google Scholar 

  • ATSDR (2003) Toxicological profile for carbon tetrachloride. U.S. Department of Health and Human Services Public Health Service; Agency For Toxic Substances and Disease Registry.

  • J Barbash PV Roberts (1986) ArticleTitleVolatile organic chemical contamination of groundwater resources in the US J. Water Pollut. Control Fed. 58 343–348 Occurrence Handle1:CAS:528:DyaL2sXksVGktb8%3D

    CAS  Google Scholar 

  • JG Becker DL Freedman (1994) ArticleTitleUse of cyanocobalamin to enhance anaerobic biodegradation of chloroform Environ. Sci. Technol. 28 1942–1949 Occurrence Handle1:CAS:528:DyaK2cXls1emtLs%3D

    CAS  Google Scholar 

  • FJ Cervantes L Vu-Thi-Thu G Lettinga JA Field (2004) ArticleTitleQuinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge Appl. Microbiol. Biotechnol. 64 702–711 Occurrence Handle1:CAS:528:DC%2BD2cXjs1eiu7k%3D

    CAS  Google Scholar 

  • PC Chiu M Reinhard (1996) ArticleTitleTransformation of carbon tetrachloride by reduced vitamin B-12 in aqueous cysteine solution Environ. Sci. Technol. 30 1882–1889 Occurrence Handle1:CAS:528:DyaK28XisFagtr8%3D

    CAS  Google Scholar 

  • R Collins F Picardal (1999) ArticleTitleEnhanced anaerobic transformations of carbon tetrachloride by soil organic matter Environ. Toxicol. Chem. 18 2703–2710 Occurrence Handle1:CAS:528:DyaK1MXns1GlsLg%3D

    CAS  Google Scholar 

  • CS Criddle JT Dewitt D Grbicgalic PL McCarty (1990) ArticleTitleTransformation of carbon-tetrachloride by pseudomonas Sp strain Kc under denitrification conditions Appl. Environ. Microbiol. 56 3240–3246 Occurrence Handle1:CAS:528:DyaK3MXjt1ah

    CAS  Google Scholar 

  • GP Curtis M Reinhard (1994) ArticleTitleReductive dehalogenation of hexachlorethane, carbon-tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic-acid Environ. Sci. Technol. 28 2393–2401 Occurrence Handle1:CAS:528:DyaK2cXms1artL0%3D

    CAS  Google Scholar 

  • C Egli R Scholtz AM Cook T Leisinger (1987) ArticleTitleAnaerobic dechlorination of tetrachloromethane and 1,2- dichloroethane to degradable products by pure cultures of Desulfobacterium sp and Methanobacterium sp FEMS Microbiol. Lett. 43 257–261 Occurrence Handle1:CAS:528:DyaL2sXlslaitL4%3D

    CAS  Google Scholar 

  • C Egli S Stromeyer AM Cook T Leisinger (1990) ArticleTitleTransformation of tetrachloromethane and trichloromethane to carbon dioxide by anaerobic bacteria is a non-enzymic process FEMS Microbiol. Lett. 68 207–212 Occurrence Handle1:CAS:528:DyaK3cXhvFGjtro%3D

    CAS  Google Scholar 

  • C Egli T Tschan R Scholtz AM Cook T Leisinger (1988) ArticleTitleTransformation of tetrachloromethane to dichloromethane and carbon-dioxide by Acetobacterium-woodii Appl. Environ. Microbiol. 54 2819–2824 Occurrence Handle1:CAS:528:DyaL1MXitVyquw%3D%3D

    CAS  Google Scholar 

  • JA Field J Brady (2003) ArticleTitleRiboflavin as a redox mediator accelerating the reduction of the azo dye mordant yellow 10 by anaerobic granular sludge Water Sci. Technol. 48 187–193 Occurrence Handle1:CAS:528:DC%2BD3sXpvFemtrk%3D

    CAS  Google Scholar 

  • MV Fonseca JC Escalante-Semerena (2000) ArticleTitleReduction of cob(III)alamin to cob(II)alamin in Salmonella enterica serovar typhimurium LT2 J. Bacteriol. 182 4304–4309 Occurrence Handle1:CAS:528:DC%2BD3cXlt1Sgs7k%3D

    CAS  Google Scholar 

  • R Galli PL McCarty (1989) ArticleTitleBiotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp Appl. Environ. Microbiol. 55 837–844 Occurrence Handle1:CAS:528:DyaL1MXitVOgu74%3D

    CAS  Google Scholar 

  • CJ Gantzer LP Wackett (1991) ArticleTitleReductive dechlorination catalyzed by bacterial transition-metal coenzymes Environ. Sci. Technol. 25 715–722 Occurrence Handle1:CAS:528:DyaK3MXht1ygsL8%3D

    CAS  Google Scholar 

  • R Gingell R Walker (1971) ArticleTitleMechanism of azo reduction by Streptococcus faecalis II. The role of soluble flavins Xenobiotica 1 231–239 Occurrence Handle10.3109/00498257109033172 Occurrence Handle1:CAS:528:DyaE38XpsFWnsw%3D%3D

    Article  CAS  Google Scholar 

  • SA Hashsham DL Freedman (1999) ArticleTitleEnhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose Appl. Environ. Microbiol. 65 4537–4542 Occurrence Handle1:CAS:528:DyaK1MXms1Oitrw%3D

    CAS  Google Scholar 

  • SA Hashsham R Scholze DL Freedman (1995) ArticleTitleCobalamin-enhanced anaerobic biotransformation of carbon-tetrachloride Environ. Sci. Technol. 29 2856–2863 Occurrence Handle1:CAS:528:DyaK2MXptFKhu7s%3D

    CAS  Google Scholar 

  • C Holliger G Schraa (1994) ArticleTitlePhysiological meaning and potential for application of reductive dechlorination by anaerobic bacteria FEMS Microbiol. Rev. 15 297–305 Occurrence Handle1:CAS:528:DyaK2cXms1amt7c%3D

    CAS  Google Scholar 

  • S Kim FW Picardal (1999) ArticleTitleEnhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides Environ. Toxicol. Chem. 18 2142–2150 Occurrence Handle1:CAS:528:DyaK1MXmt1Sqsbw%3D

    CAS  Google Scholar 

  • BW Koons JL Baeseman PJ Novak (2001) ArticleTitleInvestigation of cell exudates active in carbon tetrachloride and chloroform degradation Biotechnol. Bioeng. 74 12–17 Occurrence Handle1:CAS:528:DC%2BD3MXksVGmsrg%3D

    CAS  Google Scholar 

  • UE Krone K Laufer RK Thauer HPC Hogenkamp (1989) ArticleTitleCoenzyme-F430 as a possible catalyst for the reductive dehalogenation of chlorinated-Cl hydrocarbons in methanogenic bacteria Biochemistry 28 10061–10065 Occurrence Handle1:CAS:528:DyaK3cXkt1Sh

    CAS  Google Scholar 

  • UE Krone RK Thauer HPC Hogenkamp K Steinbach (1991) ArticleTitleReductive formation of carbon-monoxide from CC14 and freon-11, freon-12, and freon-13 catalyzed by corrinoids Biochemistry 30 2713–2719 Occurrence Handle1:CAS:528:DyaK3MXhtFKmsrY%3D

    CAS  Google Scholar 

  • TA Lewis RL Crawford (1995) ArticleTitleTransformation of carbon-tetrachloride via sulfur and oxygen substitution by Pseudomonas sp strain KC J. Bacteriol. 177 2204–2208 Occurrence Handle1:CAS:528:DyaK2MXkvFelsb8%3D

    CAS  Google Scholar 

  • TA Lewis A Paszczynski SW Gordon-Wylie S Jeedigunta CH Lee RL Crawford (2001) ArticleTitleCarbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid) Environ. Sci. Technol. 35 552–559 Occurrence Handle1:CAS:528:DC%2BD3MXhslQ%3D

    CAS  Google Scholar 

  • D Lexa JM Saveant (1983) ArticleTitleThe electrochemistry of vitamin-B12 Accounts Chemi. Res. 16 235–243 Occurrence Handle1:CAS:528:DyaL3sXksFamu7Y%3D

    CAS  Google Scholar 

  • ML McCormick EJ Bouwer P Adriaens (2002) ArticleTitleCarbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions Environ. Sci. Technol. 36 403–410 Occurrence Handle1:CAS:528:DC%2BD38XhsVWiug%3D%3D

    CAS  Google Scholar 

  • JT Nurmi PG Tratnyek (2002) ArticleTitleElectrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles Environ. Sci. Technol. 36 617–624 Occurrence Handle1:CAS:528:DC%2BD38XhsFeguw%3D%3D

    CAS  Google Scholar 

  • K Pecher SB Haderlein RP Schwarzenbach (2002) ArticleTitleReduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides Environ. Sci. Technol. 36 1734–1741 Occurrence Handle1:CAS:528:DC%2BD38XhslOgtL4%3D

    CAS  Google Scholar 

  • FW Picardal RG Arnold H Couch AM Little ME Smith (1993) ArticleTitleInvolvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella-putrefaciens 200 Appl. Environ. Microbiol. 59 3763–3770 Occurrence Handle1:CAS:528:DyaK2cXislajsg%3D%3D

    CAS  Google Scholar 

  • JJ Roxon AJ Ryan SE Wright (1967) ArticleTitleEnzymatic reduction of tartrazine by Proteus vulgaris from rats Food Cosmet. Toxicol. 5 645–656 Occurrence Handle1:CAS:528:DyaF1cXhtVaktrc%3D

    CAS  Google Scholar 

  • R Semde D Pierre G Geuskens M Devleeschouwer AJ Moes (1998) ArticleTitleStudy of some important factors involved in azo derivative reduction by Clostridium perfringens Int. J. Pharm. 161 45–54 Occurrence Handle1:CAS:528:DyaK1cXhsFeitLw%3D

    CAS  Google Scholar 

  • J Sipma PNL Lens AJM Stams G Lettinga (2003) ArticleTitleCarbon monoxide conversion by anaerobic bioreactor sludges FEMS Microbiol. Ecol. 44 271–277 Occurrence Handle1:CAS:528:DC%2BD3sXjtFWrs78%3D

    CAS  Google Scholar 

  • K Sugihara S Kitamura S Ohta (1998) ArticleTitleReductive dechlorination of DOT to DDD by rat blood Biochem. Mol. Biol. Int. 45 85–91 Occurrence Handle1:CAS:528:DyaK1cXjvVeiuro%3D

    CAS  Google Scholar 

  • K Tanaka (1997) ArticleTitleAbiotic degradation of tetrachloromethane in anaerobic culture media J. Ferment. Bioeng. 83 118–120 Occurrence Handle1:CAS:528:DyaK2sXhtVOksL4%3D

    CAS  Google Scholar 

  • SC Tu (2001) ArticleTitleReduced flavin: donor and acceptor enzymes and mechanisms of channeling Antioxidants Redox Signaling 3 881–897 Occurrence Handle1:CAS:528:DC%2BD3MXosVKju7o%3D

    CAS  Google Scholar 

  • MHA Eekert ParticleVan TJ Schroder AJM Stams G Schraa JA Field (1998) ArticleTitleDegradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge Appl. Environ. Microbiol. 64 2350–2356

    Google Scholar 

  • M Wentz (1995) ArticleTitleThe evolution of environmentally responsible fabricare technologies Am. Drycleaner 62 52–62

    Google Scholar 

  • DJ Workman SL Woods YA Gorby JK Fredrickson MJ Truex (1997) ArticleTitleMicrobial reduction of vitamin B-12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride Environ. Scl. Technol. 31 2292–2297 Occurrence Handle1:CAS:528:DyaK2sXjvFChsLo%3D

    CAS  Google Scholar 

  • SW Zou HD Stensel JF Ferguson (2000) ArticleTitleCarbon tetrachloride degradation: effect of microbial growth substrate and vitamin B-12 content Environ. Sci. Technol. 34 1751–1757 Occurrence Handle1:CAS:528:DC%2BD3cXhslentrY%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim A. Field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero-Barajas, C., Field, J.A. Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 16, 215–228 (2005). https://doi.org/10.1007/s10532-004-0638-z

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-004-0638-z

Keywords

Navigation