Skip to main content

Advertisement

Log in

Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential micronutrient for plants and animals. Unfortunately, deficiency of Zn in humans has increased on a global scale. The main reason of this micronutrient deficiency is dietary intakes of food with low Zn levels. Adoption of biofortification approaches would result in Zn enrichment of target tissue to a considerable extent. However, there is a basic need to understand Zn absorption mechanisms in plants prior to exploitation of such practical approaches. Zn absorption is a complex physiological trait which is mainly governed by Zn transporters and metal chelators of plant system. Plant growth stage, edaphic factors, season etc. also influence Zn efficiency of particular species. Molecular studies in Zn hyperaccumulators have already demonstrated the participation of specific Zn transporters, vacuolar sequestration and detoxification mechanisms in maintenance of Zn homeostasis. These have been described in detail in present review and provide opportunities for utilization in biofortification programmes. However, issues such as lesser bioavailability of Zn in target organ, uptake of toxic divalent cations (Cd, Ni, Pb, As etc.) along with Zn, sink activity and dilution in Zn concentration in response to sink number etc. in biofortified crops need further investigation. In order to design novel strategy in biofortification programmes, future researches should focus on physiological performance and yield penalties in concerned crop, metabolic load in term of organic acid production and crosstalk of Zn with other mineral nutrients under low and high Zn conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbate PE, Andrade FH, Lazaro L, Bariffi JH, Berardocco HG, Inza VH, Marturano F (1998) Grain yield increase in recent Argentine wheat cultivars. Crop Sci 38:1203–1209

    Article  Google Scholar 

  • Alberts B, Johnson A, Walter P, Lewis J, Raff M, Roberts K (2007) Molecular biology of the cell, 5th edn. Taylor & Francis, Garland Science, New York

    Google Scholar 

  • Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  CAS  Google Scholar 

  • Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879

    Article  CAS  Google Scholar 

  • Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277:2006–2011

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  CAS  Google Scholar 

  • Bouain N, Kisko M, Rouached A, Dauzat M, Lacombe B, Belgaroui N, Ghnaya T, Davidian JC, Berthomieu P, Abdelly C, Rouachedet H (2014) Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. BioMed Res Int 2014:1–9. doi:10.1155/2014/548254

    Article  Google Scholar 

  • Bouis HE, Hotz C, Mc Clafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    Article  Google Scholar 

  • Boyd RS (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Oxford, pp 181–201

    Google Scholar 

  • Boyd RS (2013) Exploring tradeoffs in hyperaccumulator ecology and evolution. New Phytol 199:871–872

    Article  Google Scholar 

  • Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195

    Article  CAS  Google Scholar 

  • Brezinova T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6:e1001102

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2004) Identification and correction of widespread zinc deficiency in Turkey-a success story. In: Proceedings of the International Fertiliser Society 552. International Fertiliser Society, York

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1986) Mechanism of phosphorus induced zinc deficiency in cotton. I. Zinc deficiency enhanced uptake rate of phosphorus. Physiol Plant 68:483–490

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1987) Mechanism of phosphorus induced zinc deficiency in cotton III. Changes in physiological availability of zinc in plants. Physiol Plant 70:13–20

    Article  CAS  Google Scholar 

  • Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, pp 133–137

    Chapter  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Calderini D, Reynolds MP, Slafer GA (2006) Source-sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Aust J Agric Res 57:227–233

    Article  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica 134:169–178

    Article  CAS  Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  Google Scholar 

  • Catlett KM, Heil DM, Lindsay WL, Ebinger MH (2002) Soil chemical properties controlling zinc (2+) activity in 18 Colorado soils. Soil Sci Soc Am J 66:1182–1189

    Article  CAS  Google Scholar 

  • Claus J, Chavarria Krauser A (2012) Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots. PLoS One 7:e37193

    Article  CAS  Google Scholar 

  • Claus J, Bohmann A, Chavarria Krauser A (2013) Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Ann Bot 112:369–380

    Article  CAS  Google Scholar 

  • Clemens S, Deinlein U, Ahmadi H, Horeth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  Google Scholar 

  • Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  CAS  Google Scholar 

  • Das S, Green A (2013) Importance of zinc in crops and human health. J SAT Agric Res 11:1–7

    Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Non selective cation channels in plants. Ann Rev Plant Biol 53:67–107

    Article  CAS  Google Scholar 

  • Deram A, Denayer FO, Petit D, Van Haluwyn C (2006) Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils. Environ Pollut 140:62–70

    Article  CAS  Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174

    Article  CAS  Google Scholar 

  • Dinh NT, Vu DT, Mulligan D, Nguyen AV (2015) Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Env Exp Bot 110:85–95

    Article  CAS  Google Scholar 

  • Disante KB, Fuentes D, Cortina J (2010) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70:96–103

    Article  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    Article  CAS  Google Scholar 

  • Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    Article  CAS  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448

    Article  CAS  Google Scholar 

  • Fageria NK (2009) The use of nutrients in crop plants. CRC Press, Boca Raton, pp 241–278

    Google Scholar 

  • Fahima T, Distelfeld A, Peleg Z, Ozturk L, Yazici AM, Saranga Y, Cakmak I (2006) Multiple QTL-effects on grain zinc, iron and protein concentrations localized within a 250-kb interval on chromosome 6BS of wheat. In: 8th international congress of plant molecular biology, 20–25 August 2006, Adelaide, Australia

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  • Fones HN, Preston GM (2013) Tradeoffs between metal hyperaccumulation and induced disease resistance in metal hyperaccumulator plants. Plant Pathol 62:63–71

    Article  Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60

    Article  CAS  Google Scholar 

  • Goolsby EW, Mason CM (2015) Towards a more physiologically and evolutionary relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33. doi:10.3389/fpls.2015.00033

    Article  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. PNAS USA 95:7220–7224

    Article  CAS  Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 265–286

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344s–1349s

    CAS  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and T. arvense shoot transcriptomes. New Phytol 170:239–260

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyper accumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  CAS  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    Article  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Article  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high affinity phosphate transporter genes in both phosphate sufficient and deficient barley roots. Plant Physiol 124:415–422

    Article  CAS  Google Scholar 

  • Ibrikci H, Knewtson SJB, Grusak MA (2003) Chickpea leaves as a vegetable green for humans: evaluation of mineral composition. J Sci Food Agric 83:945–950

    Article  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Over expression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  Google Scholar 

  • Jain A, Sinilal B, Dhandapani G, Meagher RB, Sahi SV (2013) Effects of deficiency and excess of zinc on morpho-physiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Env Sci Technol 47:5327–5335

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron and zinc biofortification of rice endosperm. PLoS One 6:e24476

    Article  CAS  Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    Article  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519

    Article  CAS  Google Scholar 

  • Kramer U (2010) Metal hyper-accumulation in plants. Ann Rev Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  CAS  Google Scholar 

  • Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  CAS  Google Scholar 

  • Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue and age dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9

    Article  CAS  Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–782

    Article  CAS  Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot M, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bioavailable zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    Article  CAS  Google Scholar 

  • Lin CW, Chang HB, Huang HJ (2005) Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem 43:963–968

    Article  CAS  Google Scholar 

  • Lochlainn SO, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6:e17814

    Article  CAS  Google Scholar 

  • Loneragan JF, Grunes DL, Welch RM, Aduayi EA, Tengah A, Lazar VA, Cary EE (1982) Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci Soc Am J 46:345–352

    Article  CAS  Google Scholar 

  • Lopez Millan AF, Ellis DR, Grusak MA (2005) Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci 168:1015–1022

    Article  CAS  Google Scholar 

  • Lu L, Liao X, Labavitch J, Yang X, Nelson E, Du Y, Brown PH, Tian S (2014) Specia-tion and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiol Biochem 84:224–232

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Advan Botanical Res 40:63–105

    Article  CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyper-accumulation are genetically independent characters. Proc R Soc Lond B 266:2175–2179

    Article  CAS  Google Scholar 

  • Marschner H (1993) Zinc uptake from soils. In: Robson AD (ed) Zinc in soils and plants. Kluwer, Dordrecht, pp 59–77

    Chapter  Google Scholar 

  • Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ, Cox FR, Shuman LM and Welch RM (eds) Micronutrients in agriculture, SSSA book series no 4. Soil Science Society of America, Inc., Madison, pp 549–592

  • Mills RF, Francini A, Ferreira da Rocha PSC, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    Article  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Nat Acad Sci USA 102:11934–11939

    Article  CAS  Google Scholar 

  • Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M (2009) A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59:437–447

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1991) Micronutrient fertilizer technology. In: Mortvedt JJ, Cox FR, Shuman LM and Welch RM (eds) Micronutrients in agriculture, SSSA book series no. 4. Madison, pp 89–112

  • Mortvedt JJ, Gilkes RJ (1993) Zinc fertilizers. In: Robson AD (ed) Zinc in soils and plants. Kluwer, Dordrecht, pp 33–44

    Chapter  Google Scholar 

  • Neumann D, zur-Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  Google Scholar 

  • Obrador A, Novillo J, Alvarez JM (2003) Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci Soc Am J 67:564–572

    Article  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  Google Scholar 

  • Paulsen IT, Saier MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Perez-Novo C, Bermudez-Couso A, Lopez-Periago E, Fernandez- Calvino D, Arias-Estevez M (2011) Zinc adsorption in acid soils: influence of phosphate. Geoderma 162:358–364

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Harvest Plus: breeding crops for better nutrition. Crop Sci 47:S88–S105

    Article  Google Scholar 

  • Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141

    Article  CAS  Google Scholar 

  • Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27:645–652

    CAS  Google Scholar 

  • Pich A, Scholz G (1991) Nicotianamine and the distribution of iron into apoplast and symplast of tomato (Lycopersicon esculentum Mill.). II. Uptake of iron by protoplasts from the variety Bonner Beste and its nicotianamine-less mutant chloronerva and the compartmentation of iron in leaves. J Exp Bot 42:1517–1523

    Article  CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  CAS  Google Scholar 

  • Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349

    CAS  Google Scholar 

  • Ram H, Sohu VS, Cakmak I, Singh K, Buttar GS, Sodhi GPS, Gill HS, Bhagat I, Singh P, Dhaliwal SS, Mavi GS (2015) Agronomic fortification of rice and wheat grains with zinc for nutritional security. Curr Sci 109:1171–1176

    Article  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28:1450–1462

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyper-accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Rattan RK, Deb DL (1981) Self diffusion of zinc and iron in soils as affected by pH, CaCO3, moisture, carrier and phosphorus levels. Plant Soil 63:377–393

    Article  CAS  Google Scholar 

  • Roosens NH, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Rossi G, Figliolia A, Socciarelli S (2004) Zinc and copper bioaccumulation in Brassica napus at flowering and maturation. Eng Life Sci 4:271–275

    Article  CAS  Google Scholar 

  • Samardjieva KA, Gonçalves RF, Valentão P, Andrade PB, Pissarra J, Pereira S, Tavares F (2014) Zinc accumulation and tolerance in Solanum nigrum are plant growth dependent. Int J Phytoremediat 17:272–279

    Article  CAS  Google Scholar 

  • Samardjieva KA, Tavares F, Pissarra J (2015) Histological and ultrastructural evidence for Zn sequestration in Solanum nigrum L. Protoplasma 252:345–357

    Article  CAS  Google Scholar 

  • Sankaran RP, Ebbs SD (2008) Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol Plant 132:69–78

    CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  CAS  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011) The Bio Cassava Plus Program: biofortification of Cassava for Sub-Saharan Africa. Ann Rev Plant Biol 62:251–272

    Article  CAS  Google Scholar 

  • Schutze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255

    Article  CAS  Google Scholar 

  • Shanmugam V, Tsednee M, Yeh KC (2012) Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69:1006–1017

    Article  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V, Zou C (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170

    Article  CAS  Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    Article  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  Google Scholar 

  • Song WY, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) ArabidopsisPCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    Article  CAS  Google Scholar 

  • Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2005) Technical monograph4. Analysing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: A handbook focusing on iron, zinc and vitamin A. HarvestPlus, Washington

    Google Scholar 

  • Steudle E (1994) Water transport across roots. Plant Soil 167:79–90

    Article  CAS  Google Scholar 

  • Suzuki M, Tsukamato T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa Naoko K (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Kramer U (2006) Zinc dependent global transcriptional control, transcriptional deregulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Trampczynska A, Kupper H, Meyer-Klaucke M, Schmidt H, Clemens S (2010) Nicotianamine forms complexes with Zn (II) in vivo. Metallomics 2:57–66

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren Ver, van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  CAS  Google Scholar 

  • van Tieghem PH (1887) Réseau sus-endodermique de la racine des Cruciférés. Bulletin de la Societé botanique de France. Séance du 25 Mars 1887, pp 125–131

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Pena-Bautista RJ, Arun B, Mahendru- Singh A, Yaqub Mujahid M, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyper-accumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  Google Scholar 

  • Volk NJ (1993) The effect of oxidation–reduction potential on plant growth. J Am Soc Agron 31:665–670

    Article  Google Scholar 

  • Vymazal J, Brezinova T (2015) Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Water Sci Tecchnol 71:268–276

    Article  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405

    Google Scholar 

  • Waters BM, Chu HH, Di Donato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  CAS  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  • White PJ (2012) Heavy metal toxicity in plants. In: Shabala S (ed) Plant stress physiology. CABI, Wallingford, pp 210–237

    Chapter  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:199–211

    Article  Google Scholar 

  • World Health Organization (WHO) (2002). The World Health Report (2002) Reducing risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    Article  CAS  Google Scholar 

  • Yang HQ, Jie YL (2005) Uptake and transport of calcium in plants. J Plant Physiol Mol Biol 31:227–234

    CAS  Google Scholar 

  • Yen MR, Tseng YH, Saier MH MH (2001) Maize Yellow Stripe1, an iron phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiol 147:2881–2883

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia. J Plant Nutr 20:461–471

    Article  CAS  Google Scholar 

  • Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Int J Environ Pollution 33:123–132

    Article  CAS  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhu YG, Smith SE, Smith FA (2001) Plant growth and cation composition of two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. J Exp Bot 52:1277–1282

    Article  CAS  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunj S, Wang ZH, Sohu V, Hassan M et al (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Ram, H. & Kumar, B. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15, 89–109 (2016). https://doi.org/10.1007/s11157-016-9390-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9390-1

Keywords

Navigation