Skip to main content

Advertisement

Log in

Physiological role and biofortification of zinc in wheat (Triticum aestivum L.)

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential micronutrient of plants and other organisms and is involved in many cellular processes. Zn deficiency is defined as the insufficient Zn available for optimal growth and can lead to a sharp decline in crop yield and quality. About 30% of the world's soils have Zn deficiency. Zn efficiency can be defined as the ratio of grain yield or above-ground dry matter yield to the total Zn uptake under both Zn-deficient and Zn-sufficient conditions. The present review focuses on the potential roles of Zn in the maintenance of plant physiological process, its uptake and translocation, plant response to Zn deficiency with emphasis on wheat, and biofortification strategies to enhance the bioavailability of Zn to wheat grains which might help in addressing significant human nutrition problems related to Zn deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu, I. A., & Cabelli, D. E. (2010). Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(2), 263–274.

    Article  CAS  Google Scholar 

  • Ahmad, R., Kim, Y. H., Kim, M. D., Kwon, S. Y., Cho, K., Lee, H. S., & Kwak, S. S. (2010). Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiologia Plantarum, 138(4), 520–533.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2009). Soil factors associated with Zn deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548.

    Article  CAS  Google Scholar 

  • Assuncao, A. G., Persson, D. P., Husted, S., Schjørring, J. K., Alexander, R. D., & Aarts, M. G. (2013). Model of how plants sense Zn deficiency. Metallomics, 5(9), 1110–1116.

    Article  CAS  Google Scholar 

  • Auld, D. S., & Bergman, T. (2008). Medium-and short-chain dehydrogenase/reductase gene and protein families: The role of Zn for alcohol dehydrogenase structure and function. Cellular and Molecular Life Sciences: CMLS, 65(24), 3961–3970.

    Article  CAS  Google Scholar 

  • Badger, M. R., & Price, G. D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Biology, 45(1), 369–392.

    Article  CAS  Google Scholar 

  • Bailey, S., Thompson, E., Nixon, P. J., Horton, P., Mullineaux, C. W., Robinson, C., & Mann, N. H. (2002). A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. Journal of Biological Chemistry, 277(3), 2006–2011.

    Article  CAS  Google Scholar 

  • Bassi, D., Kaur, K., Singh, T. P., & Kaur, J. (2021). Quality attributes and Chapatti making property of biofortified wheat as influenced by particle size. Journal of Food Science and Technology, 58(3), 1156–1164.

    Article  CAS  Google Scholar 

  • Bhat, F. A., Ganai, B. A., & Uqab, B. (2017). Carbonic anhydrase: Mechanism, structure and importance in higher plants. Asian J Plant Sci Res, 7(3), 17–23.

    CAS  Google Scholar 

  • Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 191–248). Academic Press.

    Chapter  Google Scholar 

  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zn in Plants. New Phytologist, 173(4), 677–702.

    Article  CAS  Google Scholar 

  • Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc plants. In A. D. Robson (Ed.), Zinc in soils and plants. Developments in plant and soil sciences (pp. 93–106). Springer.

    Google Scholar 

  • Bublitz, M., Poulsen, H., Morth, J. P., & Nissen, P. (2010). In and out of the cation pumps: P-type ATPase structure revisited. Current Opinion in Structural Biology, 20(4), 431–439.

    Article  CAS  Google Scholar 

  • Burnell, J. N., & Hatch, M. D. (1988). Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. Plant Physiology, 86(4), 1252–1256.

    Article  CAS  Google Scholar 

  • Cakmak, I., (2008). Zn deficiency in wheat in Turkey. In Micronutrient deficiencies in global crop production (pp. 181–200). Springer.

  • Cakmak, I. (2000). Tansley Review No. 111: possible roles of Zn in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205.

    Article  CAS  Google Scholar 

  • Cakmak, I., & Kutman, U. Á. (2018). Agronomic biofortification of cereals with Zn: A review. European Journal of Soil Science, 69(1), 172–180.

    Article  Google Scholar 

  • Cakmak, I., Marschner, H., & Bangerth, F. (1989). Effect of Zn nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 40(3), 405–412.

    Article  CAS  Google Scholar 

  • Cakmak, I., Sari, N., Marschner, H., Ekiz, H., Kalayci, M., Yilmaz, A., & Braun, H. J. (1996b). Phytosiderophore release in bread and durum wheat genotypes differing in Zn efficiency. Plant and Soil, 180(2), 183–189.

    Article  CAS  Google Scholar 

  • Cakmak, I., Yilmaz, A., Kalayci, M., Ekiz, H., Torun, B., Ereno, B., & Braun, H. J. (1996a). Zn deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 180(2), 165–172.

    Article  CAS  Google Scholar 

  • Candan, N., Cakmak, I., & Ozturk, L. (2018). Zn-biofortified seeds improved seedling growth under Zn deficiency and drought stress in durum wheat. Journal of Plant Nutrition and Soil Science, 181(3), 388–395.

    Article  CAS  Google Scholar 

  • Che, Y., Zhang, N., Zhu, X., Li, S., Wang, S., & Si, H. (2020). Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Scientia Horticulturae, 261, 108949.

    Article  CAS  Google Scholar 

  • Chen, X., & Ludewig, U. (2018). Biomass increase under Zn deficiency caused by delay of early flowering in Arabidopsis. Journal of Experimental Botany, 69(5), 1269–1279.

    Article  CAS  Google Scholar 

  • Cominelli, E., Pilu, R., & Sparvoli, F. (2020). Phytic acid and transporters: What can we learn from low phytic acid mutants? Plants, 9(1), 69.

    Article  CAS  Google Scholar 

  • Crespo-Herrera, L. A., Govindan, V., Stangoulis, J., Hao, Y., & Singh, R. P. (2017). QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Frontiers in Plant Science, 8, 1800.

    Article  Google Scholar 

  • Dalai, R. C. (1977). Soil Organic Phosphorus. Advances in Agronomy, 29, 83–117.

    Article  Google Scholar 

  • Das, S., Chaki, A. K., & Hossain, A. (2019). Breeding and agronomic approaches for the biofortification of Zn in wheat (Triticum aestivum L.) to combat Zn deficiency in millions of a population: a Bangladesh perspective. Acta Agrobotanica, 72(2), 1–13.

    Article  Google Scholar 

  • De Valenca, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8–14.

    Article  Google Scholar 

  • Doria, E., Galleschi, L., Calucci, L., Pinzino, C., Pilu, R., Cassani, E., & Nielsen, E. (2009). Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. Journal of Experimental Botany, 60(3), 967–978.

    Article  CAS  Google Scholar 

  • Durmaz, E., Coruh, C., Dinler, G., Grusak, M. A., Peleg, Z., Saranga, Y., Fahima, T., Yazici, A., Ozturk, L., Cakmak, I., & Budak, H. (2011). Expression and cellular localization of ZIP1 transporter under Zn deficiency in wild emmer wheat. Plant Molecular Biology Reporter, 29(3), 582–596.

    Article  CAS  Google Scholar 

  • Eida, M. F., Nagaoka, T., Wasaki, J., & Kouno, K. (2012). Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts. Microbes and Environments, p.ME12083.

  • Genc, Y., Verbyla, A. P., Torun, A. A., Cakmak, I., Willsmore, K., Wallwork, H., & McDonald, G. K. (2009). Quantitative trait loci analysis of Zn efficiency and grain Zn concentration in wheat using whole genome average interval mapping. Plant and Soil, 314(1), 49–66.

    Article  CAS  Google Scholar 

  • Gokhan, H. (2002). Physiological and biochemical mechanisms underlying Zn efficiency in monocot and dicot plants. Plant Physiology, 131, 595–602.

    Google Scholar 

  • Graham, R. D., Ascher, J. S., & Hynes, S. C., 1993. Selecting Zn-efficient cereal genotypes for soils of low Zn status. In Genetic aspects of plant mineral nutrition (pp. 349–358). Springer, Dordrecht.

  • Graham, R.D. & Rengel, Z. (1993). Genotypic variation in Zn uptake and utilization by plants. In Zn in soils and plants (pp. 107–118). Springer, Dordrecht.

  • Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1465(1–2), 190–198.

    Article  CAS  Google Scholar 

  • Gupta, P. K., Balyan, H. S., Sharma, S., & Kumar, R. (2021). Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theoretical and Applied Genetics, 134(1), 1–35.

    Article  CAS  Google Scholar 

  • Hacisalihoglu, G., Hart, J. J., & Kochian, L. V. (2001). High-and low-affinity Zn transport systems and their possible role in Zn efficiency in bread wheat. Plant Physiology, 125(1), 456–463.

    Article  CAS  Google Scholar 

  • Hacisalihoglu, G., & Kochian, L. V. (2003). How do some plants tolerate low levels of soil Zn? Mechanisms of Zn efficiency in crop plants. New Phytologist, 159(2), 341–350.

    Article  CAS  Google Scholar 

  • Hafeez, B. M. K. Y., Khanif, Y. M., & Saleem, M. (2013). Role of Zn in plant nutrition-a review. Journal of Experimental Agriculture International, 3, 374–391.

    Article  CAS  Google Scholar 

  • Hansch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Current Opinion in Plant Biology, 12(3), 259–266.

    Article  Google Scholar 

  • Hao, Y., Velu, G., Peña, R. J., Singh, S., & Singh, R. P. (2014). Genetic loci associated with high grain Zn concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular breeding, 34(4), 1893–1902.

    Article  CAS  Google Scholar 

  • Hayatsu, M. (2013). Utilization of phytic acid by cooperative interaction in rhizosphere. Microbes and Environments, 28(1), 1–2.

    Article  Google Scholar 

  • Holme, I. B., Dionisio, G., Brinch-Pedersen, H., Wendt, T., Madsen, C. K., Vincze, E., & Holm, P. B. (2012). Cisgenic barley with improved phytase activity. Plant Biotechnology Journal., 10(2), 237–47.

    Article  CAS  Google Scholar 

  • Hull, A. K., Vij, R., & Celenza, J. L. (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences, 97(5), 2379–2384.

    Article  CAS  Google Scholar 

  • Imtiaz, M., Alloway, B. J., Khan, P., Memon, M. Y., Siddiqui, S. U. H., Aslam, M., & Shah, S. K. H. (2006). Zn deficiency in selected cultivars of wheat and barley as tested in solution culture. Communications in Soil Science and Plant Analysis, 37(11–12), 1703–1721.

    Article  CAS  Google Scholar 

  • Jeganathan, A., Razi, A., Thurlow, B., & Ortega, J. (2015). The C-terminal helix in the YjeQZn- finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. RNA, 21(6), 1203–1216.

    Article  CAS  Google Scholar 

  • Jenab, M., & Thompson, L. U. (1998). The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis, 19(6), 1087–1092.

    Article  CAS  Google Scholar 

  • Jin, Y., Richards, N. G., Waltho, J. P., & Blackburn, G. M. (2017). Metal fluorides as analogues for studies on phosphoryl transfer enzymes. AngewandteChemie International Edition, 56(15), 4110–4128.

    Article  CAS  Google Scholar 

  • Kawagashira, N., Ohtomo, Y., Murakami, K., Matsubara, K., Kawai, J., Carninci, P., Hayashizaki, Y., Kikuchi, S., & Higo, K. (2001). Multiple Zn finger motifs with comparison of plant and insect. Genome Informatics, 12, 368–369.

    CAS  Google Scholar 

  • Khande, R., Sharma, S. K., Ramesh, A., & Sharma, M. P. (2017). Zn solubilizing Bacillus strains that modulate growth, yield and Zn biofortification of soybean and wheat. Rhizosphere, 4, 126–138.

    Article  Google Scholar 

  • Khoshgoftarmanesh, A. H., Afyuni, M., Norouzi, M., Ghiasi, S., & Schulin, R. (2018). Fractionation and bioavailability of Zn (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma, 309, 1–6.

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., & Khajehpour, M. R. (2005). Zn efficiency of wheat cultivars grown on a saline calcareous soil. Journal of Plant Nutrition, 27(11), 1953–1962.

    Article  Google Scholar 

  • Kochian, L. V. (1993). Zn absorption from hydroponic solutions by plant roots. In Zn in soils and plants (pp. 45–57). Springer.

  • Kolaj-Robin, O., Russell, D., Hayes, K. A., Pembroke, J. T., & Soulimane, T. (2015). Cation diffusion facilitator family: Structure and function. FEBS Letters, 589(12), 1283–1295.

    Article  CAS  Google Scholar 

  • Kramer, U. & Clemens, S. (2005). Functions and homeostasis of Zn, copper, and nickel in plants. In Molecular biology of metal homeostasis and detoxification (pp. 215–271). Springer.

  • Krishnappa, G., Rathan, N. D., Sehgal, D., Ahlawat, A. K., Singh, S. K., Singh, S. K., Shukla, R. B., Jaiswal, J. P., Solanki, I. S., Singh, G. P., & Singh, A. M. (2021). Identification of novel genomic regions for biofortification traits using an SNP marker-enriched linkage map in wheat (Triticum aestivum L.). Frontiers in Nutrition, 8.

  • Krishnappa, G., Singh, A. M., Chaudhary, S., Ahlawat, A. K., Singh, S. K., Shukla, R. B., Jaiswal, J. P., Singh, G. P., & Solanki, I. S. (2017). Molecular mapping of the grain iron and Zn concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L). PLoS One, 12(4), k.

    Article  Google Scholar 

  • Kutman, U. B., Kutman, B. Y., Ceylan, Y., Ova, E. A., & Cakmak, I. (2012). Contributions of root uptake and remobilization to grain Zn accumulation in wheat depending on post-anthesis Zn availability and nitrogen nutrition. Plant and Soil, 361(1), 177–187.

    Article  CAS  Google Scholar 

  • Lee, S., Jeon, U. S., Lee, S. J., Kim, Y. K., Persson, D. P., Husted, S., Schjørring, J. K., Kakei, Y., Masuda, H., Nishizawa, N. K., & An, G. (2009). Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proceedings of the National Academy of Sciences, 106(51), 22014–22019.

    Article  CAS  Google Scholar 

  • Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673–682.

    Article  CAS  Google Scholar 

  • Li, S., Liu, Z., Guo, L., Li, H., Nie, X., Chai, S., & Zheng, W. (2019). Genome-wide identification of ZIP gene family members in wheat. Research Square, pp. 1–23.

  • Liu, J., Wu, B., Singh, R. P., & Velu, G. (2019). QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Journal of Cereal Science, 88, 57–64.

    Article  CAS  Google Scholar 

  • Lombn, S. P., & Singh, B. R. (2003). Varietal tolerance to Zn deficiency in wheat and barley grown in chelatorbuffered nutrient solution and its effect on uptake of Cu, Fe, and Mn. Journal of Plant Nutrition and Soil Science, 166(1), 76–83.

    Article  Google Scholar 

  • Marschner, H., & Cakmak, I. (1989). High light intensity enhances chlorosis and necrosis in leaves of Zn, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. Journal of Plant Physiology, 134(3), 308–315.

    Article  CAS  Google Scholar 

  • McCall, K. A., Huang, C. C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition, 130(5), 1437S-1446S.

    Article  CAS  Google Scholar 

  • Mogielnicka-Brzozowska, M., Strzeżek, R., Wasilewska, K., & Kordan, W. (2015). Prostasomes of canine seminal plasma–Zn-binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa. Reproduction in Domestic Animals, 50(3), 484–491.

    Article  CAS  Google Scholar 

  • Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., & Chalot, M. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: Improved signature and prediction of substrate specificity. BMC Genomics, 8(1), 1–16.

    Article  Google Scholar 

  • Moradi, K., & Abdollahi Mandoulakani, B. (2020). Expression pattern of HMA1, HMA2 and HMA9 genes under Zn deficiency conditions in bread wheat cultivars with different Zn uptake efficiency. Cereal Research, 9(4), 347–357.

    Google Scholar 

  • Mousavi, S. R. (2011). Zn in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Sciences, 5(9), 1503–1509.

    CAS  Google Scholar 

  • Mousavi, S. R., Galavi, M., & Ahmadvand, G. (2007). Effect of Zn and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L). Asian Journal of Plant Sciences, 6(8), 1256–1260.

    Article  CAS  Google Scholar 

  • Mousavi, S. R., Galavi, M., & Rezaei, M. (2012). The interaction of Zn with other elements in plants: A review. International Journal of Agriculture and Crop Sciences, 4(24), 1881–1884.

    Google Scholar 

  • Mousavi, S. R., Galavi, M., & Rezaei, M. (2013). Zn (Zn) importance for crop production—a review. International Journal of Agronomy and Plant Production, 4(1), 64–68.

    Google Scholar 

  • Nael, M., Khademi, H., Jalalian, A., Schulin, R., Kalbasi, M., & Sotohian, F. (2009). Effect of geo- pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz. Iran. Geoderma, 152(1–2), 157–170.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216.

    Article  CAS  Google Scholar 

  • Nevo, Y., & Nelson, N. (2006). The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1763(7), 609–620.

    Article  CAS  Google Scholar 

  • Ova, E. A., Kutman, U. B., Ozturk, L., & Cakmak, I. (2015). High phosphorus supply reduced Zn concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil, 393(1), 147–162.

    Article  CAS  Google Scholar 

  • Pandey, N., Pathak, G. C., & Sharma, C. P. (2006). Zn is critically required for pollen function and fertilisation in lentil. Journal of Trace Elements in Medicine and Biology, 20(2), 89–96.

    Article  CAS  Google Scholar 

  • Pandey, N., Pathak, G. C., & Sharma, C. P. (2009). Impairment in reproductive development is a major factor limiting yield of black gram under Zn deficiency. Biologia Plantarum, 53(4), 723.

    Article  CAS  Google Scholar 

  • Pandey, N., Pathak, G. C., Singh, A. K., & Sharma, C. P. (2002). Enzymic changes in response to Zn nutrition. Journal of Plant Physiology, 159(10), 1151–1153.

    Article  CAS  Google Scholar 

  • Peng, F., Wang, C., Cheng, Y., Kang, H., Fan, X., Sha, L., Zhang, H., Zeng, J., Zhou, Y., & Wang, Y. (2018). Cloning and characterization of TpNRAMP3, a metal transporter from polish wheat (Triticum polonicum L.). Frontiers in Plant Science, 9, 1354.

    Article  Google Scholar 

  • Perera, I., Seneweera, S., & Hirotsu, N. (2018). Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 11(1), 1–13.

    Article  Google Scholar 

  • Ram, H., Rashid, A., Zhang, W., Duarte, A. Á., Phattarakul, N., Simunji, S., Kalayci, M., Freitas, R., Rerkasem, B., Bal, R. S., & Mahmood, K. (2016). Biofortification of wheat, rice and common bean by applying foliar Zn fertilizer along with pesticides in seven countries. Plant and Soil, 403(1), 389–401.

    Article  CAS  Google Scholar 

  • Ramesh, S. A., Choimes, S., & Schachtman, D. P. (2004). Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content. Plant Molecular Biology, 54, 373–385.

    Article  CAS  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118–126.

    Article  CAS  Google Scholar 

  • Rathan, N. D., Sehgal, D., Thiyagarajan, K., Singh, R. P., Singh, A. M., & Velu, G. (2021). Identification of genetic loci and candidate genes related to grain Zn and iron concentration using a Zn-enriched wheat ‘Zn-Shakti’.

  • Reichman, S. M. (2002). The responses of plants to metal toxicity: A review forusing on copper, manganese & Zn (pp. 22–26). Australian Minerals & Energy Environment Foundation.

    Google Scholar 

  • Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897–906.

    Article  Google Scholar 

  • Richter, S., & Lamppa, G. K. (2003). Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal. Journal of Biological Chemistry, 278(41), 39497–39502.

    Article  CAS  Google Scholar 

  • Rout, G. R. & Das, P. (2009). Effect of metal toxicity on plant growth and metabolism: I. Zn. Sustainable agriculture, pp.873–884.

  • Sekimoto, H., Hoshi, M., Yokota, T., & Nomura, T. (1997). Zn efficiency of dwarf Zea mays treated with a gibberellin-biosynthesis inhibitor. In Plant nutrition for sustainable food production and environment (pp. 263–264). Springer.

    Chapter  Google Scholar 

  • Sharma, P. N., Kumar, P., & Tewari, R. K. (2004). Early signs of oxidative stress in wheat plants subjected to Zn deficiency. Journal of Plant Nutrition, 27(3), 451–463.

    Article  CAS  Google Scholar 

  • Singh, B., Natesan, S. K. A., Singh, B. K., & Usha, K., (2005). Improving Zn efficiency of cereals under Zn deficiency. Current Science, pp.36–44.

  • Singh, R., Govindan, V., & Andersson, M. S. (2017). Zn-biofortified wheat: harnessing genetic diversity for improved nutritional quality (No. 2187–2019–666).

  • Singh, J. P., Karamanos, R. E., & Stewart, J. W. B. (1988). The mechanism of phosphorus-induced Zn deficiency in bean (Phaseolus vulgaris L.). Canadian Journal of Soil Science, 68(2), 345–358.

    Article  CAS  Google Scholar 

  • Sparvoli, F., & Cominelli, E. (2015). Seed biofortification and phytic acid reduction: A conflict of interest for the plant? Plants, 4(4), 728–755.

    Article  CAS  Google Scholar 

  • Stahl, A., Moberg, P., Ytterberg, J., Panfilov, O., Von Lowenhielm, H. B., Nilsson, F., & Glaser, E. (2002). Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. Journal of Biological Chemistry, 277(44), 41931–41939.

    Article  CAS  Google Scholar 

  • Stein, A. J., Nestel, P., Meenakshi, J. V., Qaim, M., Sachdev, H. P. S., & Bhutta, Z. A. (2007). Plant breeding to control Zn deficiency in India: How cost-effective is biofortification? Public Health Nutrition, 10(5), 492–501.

    Article  Google Scholar 

  • Takáč, T., Novák, D., & Šamaj, J. (2019). Recent advances in the cellular and developmental biology of phospholipases in plants. Frontiers in Plant Science, 10, 362.

    Article  Google Scholar 

  • Tiwari, C., Wallwork, H., Arun, B., Mishra, V. K., Velu, G., Stangoulis, J., Kumar, U., & Joshi, A. K. (2016). Molecular mapping of quantitative trait loci for Zn, iron and protein content in the grains of hexaploid wheat. Euphytica, 207(3), 563–570.

    Article  CAS  Google Scholar 

  • Tiwari, V. K., Rawat, N., Chhuneja, P., Neelam, K., Aggarwal, R., Randhawa, G. S., Dhaliwal, H. S., Keller, B., & Singh, K. (2009). Mapping of quantitative trait loci for grain iron and Zn concentration in diploid A genome wheat. Journal of Heredity, 100(6), 771–776.

    Article  CAS  Google Scholar 

  • Toribio, M., & Romanya, J. (2006). Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils. Science of the Total Environment, 363(1–3), 11–21.

    Article  CAS  Google Scholar 

  • Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of Zn in plants facing the drought stress. Agriculture, 10(9), 396.

    Article  Google Scholar 

  • Vallee, B. L., & Auld, D. S. (1990). Active-site Zn ligands and activated H2O of Zn enzymes. Proceedings of the National Academy of Sciences, 87(1), 220–224.

    Article  CAS  Google Scholar 

  • Vatansever, R., Filiz, E., & Eroglu, S. (2017). Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): Insights into metal homeostasis and biofortification. BioMetals, 30(2), 217–235.

    Article  CAS  Google Scholar 

  • Velu, G., Crespo-Herrera, L., Guzman, C., Huerta, J., Payne, T., & Singh, R. P. (2019). Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Frontiers in Plant Science, 9, 1971.

    Article  Google Scholar 

  • Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., & Singh, R. Á. (2014). Biofortification strategies to increase grain Zn and iron concentrations in wheat. Journal of Cereal Science, 59(3), 365–372.

    Article  CAS  Google Scholar 

  • Velu, G., Tutus, Y., Gomez-Becerra, H. F., Hao, Y., Demir, L., Kara, R., Crespo-Herrera, L. A., Orhan, S., Yazici, A., Singh, R. P., & Cakmak, I. (2017). QTL mapping for grain Zn and iron concentrations and Zn efficiency in a tetraploid and hexaploid wheat mapping populations. Plant and Soil, 411(1–2), 81–99.

    Article  CAS  Google Scholar 

  • Venegas, J. P., Graybosch, R. A., Baenziger, P. S., Bai, G., & St. Amand, P. (2018). Registration of great plains–adapted reduced phytate winter wheat germplasm. Journal of Plant Registrations, 12(3), 405–410.

    Article  Google Scholar 

  • Verma, A., & Singh, G. P. (2020). Simultaneous application of AMMI measures and yield for stability analysis of wheat genotypes evaluated under irrigated late sown conditions of Central Zone of India. Journal of Applied and Natural Science, 12(4), 541–549.

    Article  Google Scholar 

  • Vitosh, M. L., Warncke, D. D., &and Lucas, R. E. (1994). Zn determine of crop and soil. Michigan State University Extension.

  • Wang, J., & Yang, S. (2021). Dose-dependent responses of Arabidopsis thaliana to Zn are mediated by auxin homeostasis and transport. Environmental and Experimental Botany, 189, 104554.

    Article  CAS  Google Scholar 

  • Welch, R. M. (2002). The impact of mineral nutrients in food crops on global human health. Plant and Soil, 247(1), 83–90.

    Article  CAS  Google Scholar 

  • Xia, H., Xue, Y., Liu, D., Kong, W., Xue, Y., Tang, Y., Li, J., Li, D., & Mei, P. (2018). Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 9, 677.

    Article  Google Scholar 

  • Xu, Y., An, D., Liu, D., Zhang, A., Xu, H., & Li, B. (2012). Molecular mapping of QTLs for grain Zn, iron and protein concentration of wheat across two environments. Field Crops Research, 138, 57–62.

    Article  Google Scholar 

  • Yadava, D. K., Hossain, F., & Mohapatra, T. (2018). Nutritional security through crop biofortification in India: Status & future prospects. The Indian Journal of Medical Research, 148(5), 621.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Sun, Y. X., Ye, Y. L., Karim, M. R., Xue, Y. F., Yan, P., Meng, Q. F., Cui, Z. L., Cakmak, I., Zhang, F. S., & Zou, C. Q. (2012). Zn biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research, 125, 1–7.

    Article  Google Scholar 

  • Zou, C., Du, Y., Rashid, A., Ram, H., Savasli, E., Pieterse, P. J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., & Singh, S. (2019). Simultaneous biofortification of wheat with Zn, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. Journal of Agricultural and Food Chemistry, 67(29), 8096–8106.

    Article  CAS  Google Scholar 

  • Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R. Z., Ortiz-Monasterio, I., Simunji, S., Wang, Z. H., Sohu, V., & Hassan, M. (2012). Biofortification of wheat with Zn through Zn fertilization in seven countries. Plant and Soil, 361(1), 119–130.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Department of Biotechnology (DBT), Govt of India for providing funds in the form of research Projects awarded to Shailendra Sharma (SS). The authors are also thankful to Ch. Charan Singh University, Meerut for providing various research facilities. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, G., Sharma, S., Gaurav, A. et al. Physiological role and biofortification of zinc in wheat (Triticum aestivum L.). Plant Physiol. Rep. 27, 665–679 (2022). https://doi.org/10.1007/s40502-022-00677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-022-00677-6

Keywords

Navigation