Skip to main content
Log in

Microaeration for hydrogen sulfide removal during anaerobic treatment: a review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

High sulfide concentrations in biogas are a major problem associated with the anaerobic treatment of sulfate-rich substrates. It causes the corrosion of concrete and steel, compromises the functions of cogeneration units, produces the emissions of unpleasant odors, and is toxic to humans. Microaeration, i.e. the dosing of small amounts of air (oxygen) into an anaerobic digester, is a highly efficient, simple and economically feasible technique for hydrogen sulfide removal from biogas. Due to microaeration, sulfide is oxidized to elemental sulfur by the action of sulfide oxidizing bacteria. This process takes place directly in the digester. This paper reviews the most important aspects and recent developments of microaeration technology. It describes the basic principles (microbiology, chemistry) of microaeration and the key technological factors influencing microaeration. Other aspects such as process economy, mathematical modelling and control strategies are discussed as well. Besides its advantages, the limitations of microaeration such as partial oxidation of soluble substrate, clogging the walls and pipes with elemental sulfur or toxicity to methanogens are pointed out as well. An integrated mathematical model describing microaeration has not been developed so far and remains an important research gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABR:

Anaerobic baffled reactor

BTF:

Biotrickling filter

CSTR:

Continuous stirred tank reactor

DO:

Dissolved oxygen

EGSB:

Expanded granular sludge bed

FBR:

Fluidized bed reactor

IC:

Internal circuit reactor

MDU:

Microaerobic desulfurization unit

ORP:

Oxidation–reduction potential

PID:

Proportional-integral-derivative

SCADA:

Supervisory control and data acquisition

SOB:

Sulfide-oxidizing bacteria

SOU:

Sulfide-oxidizing unit

SRB:

Sulfate-reducing bacteria

TN:

Total nitrogen

UAF:

Up-flow anaerobic filter

UASB:

Up-flow anaerobic sludge blanket reactor

VFA:

Volatile fatty acid

References

  • Alcántara S, Velasco A, Muñoz A, Cid J, Revah S, Razo-Flores E (2004) Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environ Sci Technol 38(3):918–923

    Article  CAS  Google Scholar 

  • Alvarez A (2014) Use of a silicone bio-membrane for H2S removal from biogas. In: Department of Water Technology and Environmental Engineering, M.Sc., University of Chemistry and Technology Prague, pp 87

  • Annachhatre AP, Suktrakoolvait S (2001) Biological sulfide oxidation in a fluidized bed reactor. Environ Technol 22(6):661–672

    Article  CAS  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781

    Article  CAS  Google Scholar 

  • Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interface Sci 246(1):1–20

    Article  CAS  Google Scholar 

  • Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189(3):670–676

    Article  CAS  Google Scholar 

  • Botheju D, Bakke R (2011) Oxygen effects in anaerobic digestion—a review. Open Waste Manag J 4:1–19

    Article  CAS  Google Scholar 

  • Botheju D, Lie B, Bakke R (2009) Oxygen effects in anaerobic digestion. Model Identif Control 30(4):191–201

    Article  Google Scholar 

  • Botheju D, Lie B, Bakke R (2010) Oxygen effects in anaerobic digestion—II. Model Identif Control 31(2):55–65

    Article  Google Scholar 

  • Buisman C, Post R, Ijspeert P, Geraats G, Lettinga G (1989) Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnol 9(3):255–267

    Article  CAS  Google Scholar 

  • Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990a) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35(1):50–56

    Article  CAS  Google Scholar 

  • Buisman C, Uspeert P, Janssen A, Lettinga G (1990b) Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Water Res 24(5):667–671

    Article  CAS  Google Scholar 

  • Camiloti PR, Rodriguez RP, Zaiat M (2013) Silicon membrane for micro-aeration and sulfide oxidation control. In: 13th world congress on anaerobic digestion. Santiago de Compostela, Spain

  • Camiloti PR, Valdés F, Bartacek J, Nuñes DJ, Zaiat M (2014) Sulfate reduction and sulfide oxidation in an UASB reactor combined to a membrane aerated biofilm reactor (MABR). In: 11th Latin-American symposium of anaerobic digestion. La Habana, Cuba

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157

    Article  CAS  Google Scholar 

  • Celis CA (2012) Improvement of anaerobic digestion by using of microaerobic conditions. In: Department of Water Technology and Environmental Engineering, Ph.D., Institute of Chemical Technology in Prague. Prague, pp 181

  • Chandraa R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16(3):1462–1476

    Article  CAS  Google Scholar 

  • Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by oxygen. Environ Sci Technol 6(6):529–537

    Article  CAS  Google Scholar 

  • Chu L-B, Zhang X-W, Li X, Yang F-L (2005) Simultaneous removal of organic substances and nitrogen using a membrane bioreactor seeded with anaerobic granular sludge under oxygen-limited conditions. Desalination 172(3):271–280

    Article  CAS  Google Scholar 

  • Cote P, Bersillon JL, Huyard A, Faup G (1988) Bubble-free aeration using membranes: process analysis. J Water Pollut Control Fed 60(11):1986–1992

    CAS  Google Scholar 

  • Couvert A, Sanchez C, Laplanche A, Renner C (2008) Scrubbing intensification for sulphur and ammonia compounds removal. Chemosphere 70(8):1510–1517

    Article  CAS  Google Scholar 

  • Cytryn E, Minz D, Gelfand I, Neori A, Gieseke A, De Beer D, Van Rijn J (2005) Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system. Environ Sci Technol 39(6):1802–1810

    Article  CAS  Google Scholar 

  • de Arespacochaga N, Valderrama C, Mesa C, Bouchy L, Cortina JL (2014) Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in solid oxide fuel cells. Chem Eng J 255:677–685

    Article  CAS  Google Scholar 

  • De Zwart J, Sluis J, Kuenen JG (1997) Competition for dimethyl sulfide and hydrogen sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in continuous cultures. Appl Environ Microbiol 63(8):3318–3322

    Google Scholar 

  • Diak J, Ormeci B, Kennedy KJ (2013) Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. Bioprocess Biosyst Eng 36(4):417–424

    Article  CAS  Google Scholar 

  • Díaz I, Donoso-Bravo A, Fdz-Polanco M (2011a) Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour Technol 102(21):10139–10142

    Article  CAS  Google Scholar 

  • Díaz I, Fdz-Polanco M (2012) Robustness of the microaerobic removal of hydrogen sulfide from biogas. Water Sci Technol 65(8):1368–1374

    Article  Google Scholar 

  • Díaz I, Lopes AC, Perez SI, Fdz-Polanco M (2011b) Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters. Water Sci Technol 64(1):233–238

    Article  CAS  Google Scholar 

  • Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730

    Article  CAS  Google Scholar 

  • Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M (2011c) Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresour Technol 102(4):3768–3775

    Article  CAS  Google Scholar 

  • Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286

    Article  CAS  Google Scholar 

  • Duangmanee T, Kumar S, Sung S (2007) Micro-aeration for sulfide removal in anaerobic treatment of high-solid wastewater: a pilot-scale study. Proc Water Environ Fed 2007(16):2748–2760

    Article  Google Scholar 

  • Estrada-Vazquez C, Macarie H, Kato MT, Rodriguez-Vazquez R, Esparza-Garcia F, Poggi-Varaldo HM (2003) The effect of the supplementation with a primary carbon source on the resistance to oxygen exposure of methanogenic sludge. Water Sci Technol 48(6):119–124

    CAS  Google Scholar 

  • Fdz-Polanco M, Diaz I, Perez SI, Lopes AC, Fdz-Polanco F (2009) Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci Technol 60(12):3045–3050

    Article  CAS  Google Scholar 

  • Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366

    Article  CAS  Google Scholar 

  • Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10(2):209–212

    Article  CAS  Google Scholar 

  • Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40(12):2436–2446

    Article  CAS  Google Scholar 

  • Gadre RV (1989) Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng 34(3):410–414

    Article  CAS  Google Scholar 

  • Guiot SR, Pauss A, Costerton JW (1992) A structured model of the anaerobic granule consortium. Water Sci Technol 25(7):1–10

    CAS  Google Scholar 

  • Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26(2):155–187

    Article  CAS  Google Scholar 

  • Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGCD (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21:415–422

    Article  CAS  Google Scholar 

  • Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9(3):213–224

    Article  CAS  Google Scholar 

  • Ikbal, Tang Y, Shigematsu T, Morimura S, Kida K (2003) Methanogenic activity and repression of hydrogen sulfide evolved during high rate thermophilic methane fermentation of municipal solid waste. Jpn J Water Treat Biol 39(1):17–24

    Article  Google Scholar 

  • Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJ (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407(4):1333–1343

    Article  CAS  Google Scholar 

  • Janssen AJH, Sleyster R, Van der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47(3):327–333

    Article  CAS  Google Scholar 

  • Jenicek P, Celis CA, Koubova J, Pokorna D (2011a) Comparison of microbial activity in anaerobic and microaerobic digesters. Water Sci Technol 63(10):2244–2249

    Article  CAS  Google Scholar 

  • Jenicek P, Celis CA, Koubova J, Ruzickova I (2011b) Change of the digested sludge quality at microaerobic digestion. J Residuals Sci Technol 8:39–44

    CAS  Google Scholar 

  • Jenicek P, Celis CA, Krayzelova L, Anferova N, Pokorna D (2014) Improving products of anaerobic sludge digestion by microaeration. Water Sci Technol 69(4):803–809

    Article  CAS  Google Scholar 

  • Jenicek P, Celis C, Picha A, Pokorna D (2013) Influence of raw sludge quality on the efficiency of microaerobic sulfide removal during anaerobic digestion of sewage sludge. J Residuals Sci Technol 10(1):11–16

    CAS  Google Scholar 

  • Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496

    Article  CAS  Google Scholar 

  • Jenicek P, Koubova J, Bindzar J, Zabranska J (2010) Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Sci Technol 62(2):427–434

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17(1):2–10

    Article  CAS  Google Scholar 

  • Johansen JE, Bakke R (2006) Enhancing hydrolysis with microaeration. Water Sci Technol. 53:43–50

    Article  CAS  Google Scholar 

  • Jolley RA, Forster CF (1985) The kinetics of sulphide oxidation. Environ Technol Lett 6(1–11):1–10

    Article  CAS  Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202

    Article  CAS  Google Scholar 

  • Kato MT, Field JA, Lettinga G (1993a) High tolerance of methanogens in granular sludge to oxygen. Biotechnol Bioeng 42(11):1360–1366

    Article  CAS  Google Scholar 

  • Kato MT, Field JA, Lettinga G (1993b) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol Lett 114(3):317–323

    Article  CAS  Google Scholar 

  • Khanal SK, Huang J-C (2003a) ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res 37(9):2053–2062

    Article  CAS  Google Scholar 

  • Khanal SK, Huang JC (2003b) Anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity. J Environ Eng 129(12):1104–1111

    Article  CAS  Google Scholar 

  • Khanal SK, Huang JC (2006) Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Environ Res 78(4):397–408

    Article  CAS  Google Scholar 

  • Khanal SK, Shang C, Huang JC (2003) Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater. Water Sci Technol 47(12):183–189

    CAS  Google Scholar 

  • Kleinjan W, Keizer A, Janssen AH (2003) Biologically produced sulfur. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds I, vol 230. Springer, Berlin, pp 167–188

    Chapter  Google Scholar 

  • Klok JBM, de Graaff M, van den Bosch PLF, Boelee NC, Keesman KJ, Janssen AJH (2013) A physiologically based kinetic model for bacterial sulfide oxidation. Water Res 47(2):483–492

    Article  CAS  Google Scholar 

  • Kobayashi T, Li YY, Kubota K, Harada H, Maeda T, Yu HQ (2012) Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Appl Microbiol Biotechnol 93(2):847–857

    Article  CAS  Google Scholar 

  • Kohl AL, Nielsen R (1997) Gas purification. Elsevier, Amsterdam

    Google Scholar 

  • Krayzelova L, Bartacek J, Kolesarova N, Jenicek P (2014a) Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour Technol 172:297–302

    Article  CAS  Google Scholar 

  • Krayzelova L, Lynn TJ, Banihani Q, Bartacek J, Jenicek P, Ergas SJ (2014b) A tire-sulfur hybrid adsorption denitrification (T-SHAD) process for decentralized wastewater treatment. Water Res 61:191–199

    Article  CAS  Google Scholar 

  • Krishnakumar B, Majumdar S, Manilal VB, Haridas A (2005) Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Res 39(4):639–647

    Article  CAS  Google Scholar 

  • Kuenen JG (1975) Colourless sulfur bacteria and their role in the sulfur cycle. Plant Soil 43(1–3):49–76

    Article  CAS  Google Scholar 

  • Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Archiv für Mikrobiologie 94(2):173–190

    Article  CAS  Google Scholar 

  • Larkin JM, Strohl WR (1983) Beggiatoa, thiothrix, and thioploca. Annu Rev Microbiol 37(1):341–367

    Article  CAS  Google Scholar 

  • Lee EY, Lee NY, Cho K-S, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101(4):309–314

    Article  CAS  Google Scholar 

  • Lee C-M, Sublette KL (1993) Microbial treatment of sulfide-laden water. Water Res 27(5):839–846

    Article  Google Scholar 

  • Lohwacharin J, Annachhatre AP (2010) Biological sulfide oxidation in an airlift bioreactor. Bioresour Technol 101(7):2114–2120

    Article  CAS  Google Scholar 

  • Lopes AC (2010) Tratamiento anaerobio y microerobio de agua residual rica en sulfato (Anaerobic and microaerobic treatment of sulfate-rich wastewater), Ph.D. thesis, University of Valladolid (Spain)

  • Luo JF, Lin WT, Guo Y (2011) Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 90(2):769–778

    Article  CAS  Google Scholar 

  • Luther GW 3rd, Findlay AJ, Macdonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62

    Article  CAS  Google Scholar 

  • Ma Y, Zhao J, Yang B (2006) Removal of H2S in waste gases by an activated carbon bioreactor. Int Biodeterior Biodegrad 57(2):93–98

    Article  CAS  Google Scholar 

  • Maestre JP, Rovira R, Alvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D (2010) Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere 80(8):872–880

    Article  CAS  Google Scholar 

  • Mahmood Q, Zheng P, Cai J, Wu D, Hu B, Li J (2007) Anoxic sulfide biooxidation using nitrite as electron acceptor. J Hazard Mater 147(1–2):249–256

    Article  CAS  Google Scholar 

  • Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Annu Rev Microbiol 32:433–468

    Article  CAS  Google Scholar 

  • McComas C, Sublette KL, Jenneman G, Bala G (2001) Characterization of a novel biocatalyst system for sulfide oxidation. Biotechnol Prog 17(3):439–446

    Article  CAS  Google Scholar 

  • McKinsey Zicari S (2003) Removal of hydrogen sulfide from biogas using cow-manure compost. In Faculty of the Graduate School, M.Sc., Cornell University

  • Migdisov AA, Williams-Jones AE, Lakshtanov LZ, Alekhin YV (2002) Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur. Geochim Cosmochim Acta 66(10):1713–1725

    Article  CAS  Google Scholar 

  • Munz G, Gori R, Mori G, Lubello C (2009) Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. Chemosphere 76(5):644–650

    Article  CAS  Google Scholar 

  • Myint M, Nirmalakhandan N, Speece RE (2007) Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis. Water Res 41(2):323–332

    Article  CAS  Google Scholar 

  • Myung Cha J, Suk Cha W, Lee J-H (1999) Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34(6–7):659–665

    Article  Google Scholar 

  • Nelson D, Jannasch H (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136(4):262–269

    Article  CAS  Google Scholar 

  • Ng YL, Yan R, Chen XG, Geng AL, Gould WD, Liang DT, Koe LC (2004) Use of activated carbon as a support medium for H2S biofiltration and effect of bacterial immobilization on available pore surface. Appl Microbiol Biotechnol 66(3):259–265

    Article  CAS  Google Scholar 

  • Nghiem LD, Manassa P, Dawson M, Fitzgerald SK (2014) Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour Technol 173:443–447

    Article  CAS  Google Scholar 

  • Nguyen PHL, Kuruparan P, Visvanathan C (2007) Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour Technol 98:380–387

    Article  CAS  Google Scholar 

  • Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2004) Chemical sulfide oxidation of wastewater—effects of pH and temperature. Water Sci Technol 50(4):185–192

    Google Scholar 

  • O’Brien DJ, Birkner FB (1977) Kinetics of oxygenation of reduced sulfur species in aqueous solution. Environ Sci Technol 11(12):1114–1120

    Article  Google Scholar 

  • O’Keefe DM, Brigmon RL, Chynoweth DP (2000) Influence of methane enrichment by aeration of recirculated supernatant on microbial activities during anaerobic digestion. Bioresour Technol 71(3):217–224

    Article  Google Scholar 

  • Ongcharit C, Shah YT, Sublette KL (1990) Novel immobilized cell reactor for microbial oxidation of H2S. Chem Eng Sci 45(8):2383–2389

    Article  CAS  Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies—developments and innovations. http://typo3.dena.de/fileadmin/biogas/Downloads/Studien/IEA-BiogasUpgradingTechnologies2009.pdf. Accessed 9 Mar 2015

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology. McGraw-Hill, New York

    Google Scholar 

  • Ramos I, Diaz I, Fdz-Polanco M (2012) The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge. Water Sci Technol 66(10):2258–2264

    Article  CAS  Google Scholar 

  • Ramos I, Fdz-Polanco M (2013) The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Bioresour Technol 140:80–85

    Article  CAS  Google Scholar 

  • Ramos I, Fdz-Polanco M (2014) Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem Eng J 250:303–311

    Article  CAS  Google Scholar 

  • Ramos I, Peña M, Fdz-Polanco M (2014a) Where does the removal of H2S from biogas occur in microaerobic reactors? Bioresour Technol 166:151–157

    Article  CAS  Google Scholar 

  • Ramos I, Pérez R, Fdz-Polanco M (2013) Microaerobic desulphurisation unit: a new biological system for the removal of H2S from biogas. Bioresour Technol 142:633–640

    Article  CAS  Google Scholar 

  • Ramos I, Pérez R, Fdz-Polanco M (2014b) The headspace of microaerobic reactors: sulphide-oxidising population and the impact of cleaning on the efficiency of biogas desulphurisation. Bioresour Technol 158:63–73

    Article  CAS  Google Scholar 

  • Ramos I, Pérez R, Reinoso M, Torio R, Fdz-Polanco M (2014c) Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour Technol 164:338–346

    Article  CAS  Google Scholar 

  • Ravichandra P, Ramakrishna M, Gangagni RA, Annapurna J (2006) Sulfide oxidation in a batch fluidized bed bioreactor using immobilized cells of isolated Thiobacillus sp. (iict-sob-dairy-201) as biocatalyst. J Eng Sci Technol 1(1):21–30

    Google Scholar 

  • Rodriguez E, Lopes A, Fdz-Polanco M, Stams AJ, Garcia-Encina PA (2012) Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Appl Microbiol Biotechnol 93(5):2181–2191

    Article  CAS  Google Scholar 

  • Schneider RL, Quicker P, Anzer T, Prechtl S, Faulstich M (2002) Grundlegende Untersuchungen zur effektiven, kostengünstigen Entfernung von Schwefelwasserstoff aus Biogas. In: Biogasanlagen Anforderungen zur Luftreinhaltung. Ausburg

  • Sharma K, Derlon N, Hu S, Yuan Z (2014) Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Water Res 49:175–185

    Article  CAS  Google Scholar 

  • Shen CF, Guiot SR (1996) Long-term impact of dissolved O2 on the activity of anaerobic granules. Biotechnol Bioeng 49(6):611–620

    Article  CAS  Google Scholar 

  • Stucki G, Hanselmann KW, Hurzeler RA (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotechnol Bioeng 41(3):303–315

    Article  CAS  Google Scholar 

  • Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2.1–2.14

    Google Scholar 

  • Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S (1997) Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry 38(3):227–253

    Article  CAS  Google Scholar 

  • Tale VP, Maki JS, Zitomer DH (2015) Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res 70:138–147

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94

    Article  CAS  Google Scholar 

  • Tang Y, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38(10):2537–2550

    Article  CAS  Google Scholar 

  • Tartakovsky B, Mehta P, Bourque JS, Guiot SR (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102(10):5685–5691

    Article  CAS  Google Scholar 

  • Tichý R, Janssen A, Grotenhuis JTC, Lettinga G, Rulkens WH (1994) Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli with respect to bioleaching processes. Bioresour Technol 48(3):221–227

    Article  Google Scholar 

  • van den Ende FP, van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13(1):69–77

    Article  Google Scholar 

  • van der Zee FP, Villaverde S, García PA, Fdz-Polanco F (2007) Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresour Technol 98(3):518–524

    Article  CAS  Google Scholar 

  • Vannini C, Munz G, Mori G, Lubello C, Verni F, Petroni G (2008) Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Syst Appl Microbiol 31(6–8):461–473

    Article  CAS  Google Scholar 

  • Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microbiol 63(8):3123–3127

    CAS  Google Scholar 

  • Wang W, Zhang J, Wang S, Shen J, Pan S-L (2014) Oxygen-limited aeration for relieving the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. Int Biodeterior Biodegrad 95:110–116

    Article  CAS  Google Scholar 

  • Wase DAJ, Forster CF (1984) Biogas—fact or fantasy. Biomass 4(2):127–142

    Article  CAS  Google Scholar 

  • Wellinger A, Lindberg A (1999) Biogas upgrading and utilization, Task 24—energy from biological conversion of organic wastes. IEA Bioenergy, pp 1–20. http://www.seai.ie/Renewables/Bioenergy/Biogas_upgrading_and_utilisation_IEA_Bioenergy_Report.pdf

  • Wilmot PD, Cadee K, Katinic JJ, Kavanagh BV (1988) Kinetics of sulfide oxidation by dissolved oxygen. J Water Pollut Control Fed 60(7):1264–1270

    CAS  Google Scholar 

  • Xu X, Chen C, Lee DJ, Wang A, Guo W, Zhou X, Guo H, Yuan Y, Ren N, Chang JS (2013) Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation. Bioresour Technol 147:202–211

    Article  CAS  Google Scholar 

  • Xu XJ, Chen C, Wang AJ, Fang N, Yuan Y, Ren NQ, Lee DJ (2012) Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresour Technol 116:517–521

    Article  CAS  Google Scholar 

  • Xu S, Selvam A, Wong JWC (2014) Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag 34(2):363–369

    Article  CAS  Google Scholar 

  • Yu H, Chen C, Ma J, Xu X, Fan R, Wang A (2014) Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor. J Environ Sci 26(5):1099–1107

    Article  CAS  Google Scholar 

  • Zehnder AJB (1988) Biology of anaerobic microorganisms. Wiley, Hoboken

    Google Scholar 

  • Zhou W, Imai T, Ukita M, Li F, Yuasa A (2007) Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66(5):924–929

    Article  CAS  Google Scholar 

  • Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci 23(11):1761–1769

    Article  CAS  Google Scholar 

  • Zhu M, Lü F, Hao L-P, He P-J, Shao L-M (2009) Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag 29(7):2042–2050

    Article  CAS  Google Scholar 

  • Zitomer DH, Shrout JD (1998) Feasibility and benefits of methanogenesis under oxygen-limited conditions. Waste Manag 18(2):107–116

    Article  CAS  Google Scholar 

  • Zitomer DH, Shrout JD (2000) High-sulfate, high chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds. Water Environ Res 72:90–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the specific university research (MSMT No. 20/2015), the International Research Staff Exchange Scheme project “Renewable energy production through microalgae cultivation: Closing material cycles—ALGAENET” (PIRSES-GA-2011-295165) and by the Technology Agency of Czech Republic—Project TA03021413. Lucie Krayzelova received funding for a joint doctorate from Ghent University’s Special Research Fund (BOF—01SF2012). David Jeison would like to thank for support provided by CRHIAM Centre (CONICYT/FONDAP/15130015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Krayzelova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krayzelova, L., Bartacek, J., Díaz, I. et al. Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Rev Environ Sci Biotechnol 14, 703–725 (2015). https://doi.org/10.1007/s11157-015-9386-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9386-2

Keywords

Navigation