Skip to main content
Log in

Dehydrogenation of ethanol over carbon-supported Cu–Co catalysts modified by catalytic chemical vapor deposition

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A bimetallic copper–cobalt catalyst supported on activated carbon fibrous (ACF) material was prepared by the incipient wetness impregnation of the support with an aqueous solution of corresponding nitrates. Reference monometallic Cu/ACF and Co/ACF samples were synthesized analogously. In order to enhance the metal-support interaction and stabilize the dispersion of active components, the Cu–Co/ACF catalyst was subjected to catalytic chemical vapor deposition of ethylene at 600 °C with the formation of carbon nanofibers (CNF). As a result, the catalytic system consisting of Cu–Co particles anchored on carbon–carbon composite was obtained. All samples were characterized by a set of physicochemical methods. The catalytic performance of pristine and CNF-modified samples was studied in the ethanol dehydrogenation reaction. The activity of Cu–Co/CNF/ACF catalyst was shown to be two times higher compared with the unmodified bimetallic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gallo JMR, Bueno J, Schuchardt U (2014) J Braz Chem Soc 25:2229–2243

    CAS  Google Scholar 

  2. Chladek P, Croiset E, Epling W, Hudgins RR (2007) Can J Chem Eng 85:917–924

    Article  CAS  Google Scholar 

  3. Konsolakisa M, Ioakeimidis Z (2014) Appl Surf Sci 320:244–255

    Article  Google Scholar 

  4. Wang L, Cao A, Lui G, Zhang L, Liu Y (2016) Appl Surf Sci 360:77–85

    Article  CAS  Google Scholar 

  5. Ma WP, Ding YJ, Lin LW (2004) Ind Eng Chem Res 43:2391–2398

    Article  CAS  Google Scholar 

  6. Li J, Tang X, Yi H, Yu Q, Gao F, Zhang R, Li C, Chu C (2017) Appl Surf Sci 412:37–44

    Article  CAS  Google Scholar 

  7. Ampelli C, Perathoner S, Centi G (2014) Chin J Catal 35:783–791

    Article  CAS  Google Scholar 

  8. Morales MV, Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A (2016) Carbon 102:426–436

    Article  CAS  Google Scholar 

  9. Zazhigalov S, Elyshev A, Lopatin S, Larina T, Cherepanova S, Mikenin P, Zagoruiko A (2017) React Kinet Mech Cat 120:247–260

    Article  CAS  Google Scholar 

  10. Vedyagin AA, Mishakov IV, Tsyrulnikov PG (2016) React Kinet Mech Cat 117:35–46

    Article  CAS  Google Scholar 

  11. Shelepova EV, Vedyagin AA, Ilina LY, Nizovskii AI, Tsyrulnikov PG (2017) Appl Surf Sci 409:291–295

    Article  CAS  Google Scholar 

  12. Fan YJ, Wu SF (2016) J CO2 Util 16:150–156

    Article  CAS  Google Scholar 

  13. Kong Y, Qiu T, Qiu J (2013) Appl Surf Sci 265:352–357

    Article  CAS  Google Scholar 

  14. Ledoux MJ, Pham-Huu C (2005) Catal Today 102–103:2–14

    Article  Google Scholar 

  15. Sun J, Li H, Feng L, Jia Y, Song Q, Li K (2017) Appl Surf Sci 403:95–102

    Article  CAS  Google Scholar 

  16. Krasnikova IV, Mishakov IV, Vedyagin AA, Bauman YI, Korneev DV (2017) Mater Chem Phys 186:220–227

    Article  CAS  Google Scholar 

  17. Potoczna-Petru D, Kepinski L (2001) Catal Lett 73:41–46

    Article  CAS  Google Scholar 

  18. Sales EA, de Souza TRO, Santos RC, Carvalho Andrade HM (2005) Catal Today 107–108:114–119

    Article  Google Scholar 

  19. Jeon GS, Chung JS (1994) Appl Catal A 115:29–44

    Article  CAS  Google Scholar 

  20. Zaman M, Khodadi A, Mortazavi Y (2009) Fuel Process Tech 90:1214–1219

    Article  CAS  Google Scholar 

  21. Yang Y, Jia L, Meng Y, Hou B, Li D, Sun Y (2012) Catal Lett 142:195–204

    Article  CAS  Google Scholar 

  22. Pei Y, Ding Y, Zhu H, Du H (2015) Chin J Catal 36:355–361

    Article  CAS  Google Scholar 

  23. Fu T, Huang Ch, Lu J, Li Z (2014) Fuel 121:225–231

    Article  CAS  Google Scholar 

  24. Bai S, Huang C, Lv J, Li Z (2012) Catal Commun 22:24–27

    Article  CAS  Google Scholar 

  25. Baker JE, Burch R, Hibble SJ, Loader PK (1990) Appl Catal 65:281–292

    Article  CAS  Google Scholar 

  26. Chuang KH, Lu CY, Wey MY, Huang YN (2011) Appl Catal A 397:234–240

    Article  CAS  Google Scholar 

  27. Cesar DV, Peréz CA, Salim VMM, Schmal M (1999) Appl Catal A 176:205–212

    Article  CAS  Google Scholar 

  28. Nishizawa T, Ishida K (1984) J Phase Equilib 5:161–165

    CAS  Google Scholar 

  29. Van Stiphout PCM, Stobbe DE, Scheur FTV, Geus JW (1988) Appl Catal 40:219–246

    Article  Google Scholar 

  30. Roth TA (1975) Mater Sci Eng 18:183–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations (state-guaranteed order for BIC, Project No. 0303-2016-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, E.A., Krasnikova, I.V., Egorova, E.V. et al. Dehydrogenation of ethanol over carbon-supported Cu–Co catalysts modified by catalytic chemical vapor deposition. Reac Kinet Mech Cat 122, 399–408 (2017). https://doi.org/10.1007/s11144-017-1220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1220-0

Keywords

Navigation