Skip to main content
Log in

Fischer–Tropsch Synthesis over Ordered Mesoporous Carbon Supported Cobalt Catalysts: The Role of Amount of Carbon Precursor in Catalytic Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ordered mesoporous carbon supported cobalt-based catalysts (Co/MC) were synthesized via incipient wetness impregnation with different amounts of furfuryl alcohol (FA) as carbon precursor. The characterizations of obtained Co/MC were subjected to N2 adsorption, XRD, XPS, TEM, H2-TPR, H2-TPD and H2-TPSR. The results indicate that the reducibility and dispersion of Co active species vary significantly due to the difference of FA amount. By simply tuning the FA content from 25 to 100 wt%, the reduction temperature of deriving metallic Co shifts gradually to lower. The catalytic performance of Co/MC was evaluated for Fischer–Tropsch (FT) synthesis. The observed FT activity exhibits a volcano-type curve with the amount of FA due to the effect of both reducibility and dispersion of active species. As the precursor concentration overweighs 50 wt%, the ability of CO to dissociate over the active surface and the selectivity to the C5+ products level off after experiencing an initial increase. Substantially, the catalysts with higher concentration of FA render the larger crystallites having an average size of more than 6 nm, which facilitates the CO hydrogenation by way of carbon chain propagation. It seems that the sample with FA content of 50 wt% is optimum in terms of FT activity and C5+ selectivity.

Graphical Abstract

By simply tuning the carbon precursor furfuryl alcohol (FA) content from 25 to 100 wt%, the textural property of mesoporous carbon varies significantly, which further induces the different reducibility and dispersion of Co active species and the temperature of deriving metallic Co shifts gradually to lower. The catalytic performance of as-synthesized catalysts was evaluated for Fischer–Tropsch synthesis (FTS). The observed FT activity exhibits a volcano-type curve with the amount of FA due to the effect of both reducibility and dispersion of active species. At the FA concentration of support over 50 wt%, the selectivity to the C5+ heavy molecular maintain invariant after experiencing an initial increase. It seems that the sample with respect to 50 wt% FA is optimum in terms of FT activity and C5+ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okabe K, Wei M, Arakawa H (2003) Energy Fuels 17:822

    Article  CAS  Google Scholar 

  2. Yu ZX, Borg O, Chen D, Enger BC, Froseth V, Rytter E, Wigum H, Holmen A (2006) Catal Lett 109:43

    Article  CAS  Google Scholar 

  3. Sun S, Tsubaki N, Fujimoto K (2000) Appl Catal A 202:121

    Article  CAS  Google Scholar 

  4. MartInez A, López C, Márquez F, Diaz I (2003) J Catal 220:486

    Article  CAS  Google Scholar 

  5. Sapag K, Rojas S, Granados ML, Fierro JLG, Mendioroz S (2001) J Mol Catal A 167:81

    Article  CAS  Google Scholar 

  6. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  7. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A 333:177

    Article  CAS  Google Scholar 

  8. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230

    Article  CAS  Google Scholar 

  9. Prieto G, Martínez A, Murciano R, Arribas MA (2009) Appl Catal A 367:146

    Article  CAS  Google Scholar 

  10. Yin D, Li W, Yang W, Xiang H, Sun Y, Zhong B, Peng S (2001) Microporous Mesoporous Mater 47:15

    Article  CAS  Google Scholar 

  11. Mu S, Li D, Hou B, Jia L, Chen J, Sun Y (2010) Energy Fuels 24:3715

    Article  CAS  Google Scholar 

  12. Xiong H, Zhang Y, Liew K, Li J (2008) J Mol Catal A 295:68

    Article  CAS  Google Scholar 

  13. Wang W-J, Chen Y-W (1991) Appl Catal 77:223

    Article  CAS  Google Scholar 

  14. Zhang J, Chen J, Ren J, Li Y, Sun Y (2003) Fuel 82:581

    Article  CAS  Google Scholar 

  15. Zhang Y, Nagamori S, Hinchiranan S, Vitidsant T, Tsubaki N (2006) Energy Fuels 20:417

    Article  CAS  Google Scholar 

  16. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, Jong KPd (2009) J Am Chem Soc 131:7197

    Article  Google Scholar 

  17. Xiong K, Li J, Liew K, Zhan X (2010) Appl Catal A 389:173

    Article  CAS  Google Scholar 

  18. Lu A-H, Li W-C, Schmidt W, Kiefer W, Schüth F (2004) Carbon 42:2939

    Article  CAS  Google Scholar 

  19. Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Appl Catal A 353:193

    Article  Google Scholar 

  20. Rameswaran M, Bartholomew CH (1989) J Catal 117:218

    Article  CAS  Google Scholar 

  21. Lu AH, Schmidt W, Schuth F (2003) New Carbon Mater 18:181

    CAS  Google Scholar 

  22. Li H, Wang S, Ling F, Li J (2006) J Mol Catal A 244:33

    Article  CAS  Google Scholar 

  23. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  24. Ernst B, Hilaire L, Kiennemann A (1999) Catal Today 50:413

    Article  CAS  Google Scholar 

  25. Wang T, Ding YJ, Xiong JM, Yan L, Zhu HJ, Lu Y, Lin LW (2006) Catal Lett 107:47

    Article  CAS  Google Scholar 

  26. Khodakov AY, Bechara R, Griboval-Constant A (2003) Appl Catal A 254:273

    Article  CAS  Google Scholar 

  27. Guerrero-Ruiz A, Sepúlveda-Escribano A, Rodríguez-Ramos I (1994) Appl Catal A 120:71

    Article  CAS  Google Scholar 

  28. Oades RD, Morris SR, Moyes RB (1990) Catal Today 7:199

    Article  CAS  Google Scholar 

  29. Chen W, Fan Z, Pan X, Bao X (2008) J Am Chem Soc 130:9414

    Article  CAS  Google Scholar 

  30. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893

    Article  CAS  Google Scholar 

  31. Fujimoto K, Kameyama M, Kunugi T (1980) J Catal 61:7

    Article  CAS  Google Scholar 

  32. Tsubaki N, Sun S, Fujimoto K (2001) J Catal 199:236

    Article  CAS  Google Scholar 

  33. Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212

    Article  CAS  Google Scholar 

  34. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA, Nakhaeipour A (2008) Fuel Process Technol 89:491

    Article  CAS  Google Scholar 

  35. Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) J Catal 158:288

    Article  CAS  Google Scholar 

  36. Tsubaki N, Yoshii K, Fujimoto K (2002) J Catal 207:371

    Article  CAS  Google Scholar 

  37. Puskas I, Hurlbut RS (2003) Catal Today 84:99

    Article  CAS  Google Scholar 

  38. Bezemer GL, Bitter JH, Kuipers H, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (21003149 and 21076218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Litao Jia or Yuhan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Jia, L., Meng, Y. et al. Fischer–Tropsch Synthesis over Ordered Mesoporous Carbon Supported Cobalt Catalysts: The Role of Amount of Carbon Precursor in Catalytic Performance. Catal Lett 142, 195–204 (2012). https://doi.org/10.1007/s10562-011-0747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0747-3

Keywords

Navigation