Skip to main content
Log in

Copper-chromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The paper is dedicated to the novel glass-fiber catalysts (GFC) using copper chromite as an active component for the reaction of deep oxidation of hydrocarbons and volatile organic compounds (VOCs). The catalyst support is the glass microfibrous fabric preliminarily modified by the addition of an external layer of silica secondary porous support. Surface thermosynthesis was applied for manufacturing of such catalysts. XRD and UV–Vis DRS studies have demonstrated that the active component in the synthesized GFCs is CuCr2O4 in the structural type of partially inverted spinel. As shown in experiments with the deep oxidation of toluene in air, the specific activity of CuCr2O4/GFC per unit mass of the active component exceeds that of the similar conventional CuCr2O4/Al2O3 catalyst by up to 20–30 times. Such significant rise is explained by both the much more efficient mass transfer in GFC cartridges and the higher intrinsic activity of the copper chromite in the GFC, where the particles of CuCr2O4 have the typical size of 10–25 nm compared to >100 nm in case of conventional alumina catalyst. The proposed GFC looks promising for the abatement of hydrocarbons and VOCs in different waste gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GFC:

Glass-fiber catalyst

GFF:

Glass-fiber fabric

SEM:

Scanning electron microscopy

STS:

Surface thermal synthesis

TEM:

Transmission electron microscopy

UV–Vis DRS:

Ultraviolet–Visible Diffuse Reflectance Spectroscopy

XRD:

X-ray diffraction

References

  1. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  2. Khan FI, Ghoshal AK (2000) J Loss Prev Process Ind 13:527

    Article  Google Scholar 

  3. Wang L, Zhang C, Huang H, Li X, Zhang W, Lu M, Li M (2016) Reac Kinet Mech Cat 118:605–619

    Article  CAS  Google Scholar 

  4. Zhang Z, Jiang Z, Shangguan W (2016) Catal Today 264:270

    Article  CAS  Google Scholar 

  5. Cybulski A, Moulijn JA (1994) Catal Rev 36:179

    Article  CAS  Google Scholar 

  6. Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T (2004) AIChE J 50:2918

    Article  CAS  Google Scholar 

  7. Pestryakov AN, Fyodorov AA, Shurov VA (1994) React Kinet Catal Lett 53:347

    Article  CAS  Google Scholar 

  8. Richardson JT, Remue D, Hung JK (2003) App Catal A 250:319

    Article  CAS  Google Scholar 

  9. Giani L, Groppi G, Tronconi E (2005) Ind Eng Chem Res 44:4993

    Article  CAS  Google Scholar 

  10. Twigg MW, Richardson JT (2007) Ind Eng Chem Res 46:4166

    Article  CAS  Google Scholar 

  11. Incera Garrido G, Patcas FC, Lang S, Kraushaar-Czarnetzki B (2008) Chem Eng Sci 63:5202

    Article  CAS  Google Scholar 

  12. Jiang Z, Chung KS, Kim GR, Chung JS (2003) Chem Eng Sci 58:1103

    Article  CAS  Google Scholar 

  13. Sun H, Shu Y, Quan X, Chen S, Pang B, Liu Z (2010) Chem Eng J 165:769

    Article  CAS  Google Scholar 

  14. Banús ED, Sanz O, Milt VG, Miró EE, Montes M (2014) Chem Eng J 246:353

    Article  Google Scholar 

  15. Porsin AV, Kulikov AV, Dalyuk IK, Rogozhnikov VN, Kochergin VI (2015) Chem Eng J 282:233

    Article  CAS  Google Scholar 

  16. Balzhinimaev B, Paukshtis E, Vanag S, Suknev A, Zagoruiko A (2010) Catal Today 151:195

    Article  CAS  Google Scholar 

  17. Kiwi-Minsker L, Yuranov I, Slavinskaia E, Zaikovskii V, Renken A (2000) Catal Today 59:61

    Article  CAS  Google Scholar 

  18. Krauns C, Barelko V, Fabre G, Tredicce J, Krinsky V (2001) Catal Lett 72:161

    Article  CAS  Google Scholar 

  19. Medina-Valtierra J, Ramírez-Ortiz J, Arroyo-Rojas VM, Ruiz F (2002) App Catal A 238:1

    Article  Google Scholar 

  20. Brüning R, Scholz P, Morgenthal I, Andersen O, Scholz J, Nocke G, Ondruschka B (2005) Chem Eng Technol 28:1056

    Article  Google Scholar 

  21. Zagoruiko AN, Lopatin SA, Balzhinimaev BS, Gil’mutdinov NR, Sibagatullin GG, Pogrebtsov VP, Nazmieva IF (2010) Catal Ind 2:113

    Article  Google Scholar 

  22. Kulikov AV, Zagoruiko AN, Lopatin SA, Porsin AV (2015) Sci Bull NSTU 58:257

    Article  Google Scholar 

  23. Lopatin SA, Tsyrulnikov PG, Kotolevich YS, Mikenin PE, Pisarev DA, Zagoruiko AN (2015) Catal Ind 7:329

    Article  Google Scholar 

  24. Paukshtis EA, Simonova LG, Zagoruiko AN, Balzhinimaev BS (2010) Chemosphere 79:199

    Article  CAS  Google Scholar 

  25. Zagoruiko A, Vanag S, Balzhinimaev B, Paukshtis E, Simonova L, Zykov A, Anichkov S, Hutson N (2009) Chem Eng J 154:325

    Article  CAS  Google Scholar 

  26. Zagoruiko A, Balzhinimaev B, Vanag S, Goncharov V, Lopatin S, Zykov A, Anichkov S, Zhukov Y, Yankilevich V, Proskokov N, Hutson N (2010) J Waste Manag Assoc 60:1002

    Article  CAS  Google Scholar 

  27. Vanag SV, Paukshtis EA, Zagoruiko AN (2015) React Kinet Mech Cat 116:147

    Article  CAS  Google Scholar 

  28. Mikenin PE, Zazhigalov SV, Elyshev AV, Lopatin SA, Larina TV, Cherepanova SV, Pisarev DA, Baranov DV, Zagoruiko AN (2016) Catal Commun 87:36–40

    Article  CAS  Google Scholar 

  29. Mikenin PE, Tsyrulnikov PG, Kotolevich YS, Zagoruiko AN (2015) Catal Ind 2:155

    Article  Google Scholar 

  30. Britcher LG, Matisons JG (2000) ACS Symp Series 760:127–144

    Article  CAS  Google Scholar 

  31. Li L, Diao Y, Liu X (2014) J Rare Earths 32:409–415

    Article  Google Scholar 

  32. Shalygin A, Paukshtis E, Kovalyov E, Balzhinimaev S (2013) Front Chem Sci Eng 7:279

    Article  CAS  Google Scholar 

  33. Aldashukurova GB, Mironenko AV, Mansurov ZA, Shikina NV, Yashnik SA, Kuznetsov VV, Ismagilov ZR (2013) J Energy Chem 22:811

    Article  CAS  Google Scholar 

  34. Debeche T, Marmet C, Kiwi-Minsker L, Renken A, Juillerat MA (2005) Enzyme Microbial Technol 36:911

    Article  CAS  Google Scholar 

  35. Hofstadler K, Bauer R (1994) Env Sci Technol 28:670

    Article  CAS  Google Scholar 

  36. Palau J, Colomer M, Penya-Roja JM, Martínez-Soria V (2012) Ind Eng Chem Res 51:5986

    Article  CAS  Google Scholar 

  37. Sangkhun W, Laokiat L, Tanboonchuy V, Khamdahsag P, Grisdanurak N (2012) Superlattices Microstruct 52:632

    Article  CAS  Google Scholar 

  38. Lin S, Zhang X, Sun Q, Zhou T, Lu J (2013) Mater Res Bull 48:4570

    Article  CAS  Google Scholar 

  39. Pham TD, Lee BK (2014) Int J Env Res Public Health 11:3271

    Article  CAS  Google Scholar 

  40. Salmi T, Mäki-Arvela P, Toukoniitty E, Kalantar Neyestanaki A, Lindfors LE, Sjoholm R, Laine E (2000) Stud Surf Sci Catal 130C:2033

    Article  CAS  Google Scholar 

  41. Gulyaeva YK, Kaichev VV, Zaikovskii VI, Kovalyov EV, Suknev AP, Balzhinimaev BS (2015) Catal Today 245:139

    Article  CAS  Google Scholar 

  42. Lopatin SA, Zagoruiko AN (2014) Chem Eng J 238:31

    Article  Google Scholar 

  43. Lopatin S, Mikenin P, Pisarev D, Baranov D, Zazhigalov S, Zagoruiko A (2015) Chem Eng J 282:58–65

    Article  CAS  Google Scholar 

  44. Xanthopoulou G, Vekinis G (1998) App Catal B 19:37

    Article  CAS  Google Scholar 

  45. Specchia S, Civera A, Saracco G (2004) Chem Eng Sci 59:5091

    Article  CAS  Google Scholar 

  46. Zav’yalova UF, Tretyakov VF, Burdeinaya TN, Lunin VV, Shitova NB, Ryzhova ND, Shmakov AN, Nizovskii AI, Tsyrulnikov PG (2005) Kinet Catal 46:752

    Article  Google Scholar 

  47. Fino D, Russo N, Saracco G, Specchia V (2006) J Catal 242:38

    Article  CAS  Google Scholar 

  48. Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Instit 31:1789

    Article  Google Scholar 

  49. Kumar A, Mukasyan AS, Wolf EE (2011) App Catal A 401:20

    Article  CAS  Google Scholar 

  50. Aldashukurova GG, Shikina NV, Mironenko AV, Mansurov ZA, Ismagilov ZR (2011) Int J Self-Propagating High-Temp Synth 20:124

    Article  CAS  Google Scholar 

  51. Morsi K (2012) J Mater Sci 47:68

    Article  CAS  Google Scholar 

  52. Yadav GD, Ajgaonkar NP, Varma A (2012) J Catal. 292:99

    Article  CAS  Google Scholar 

  53. Postole G, Nguyen TS, Aouine M, Gélin P, Cardenas L, Piccolo L (2015) App Catal B 166–167:580

    Article  Google Scholar 

  54. Desyatikh IV, Vedyagin AA, Kotolevich YS, Tsyrulnikov PG (2011) Combust Explos Shock Waves 47:677

    Article  Google Scholar 

  55. Afonasenko TN, Tsyrulnikov PG, Gulyaeva TI, Leont’eva NN, Smirnova NS, Kochubei DI, Mironenko OO, Svintsitskii DA, Boronin AI, Kotolevich YS, Suprun EA, Salanov AN (2013) Kinet Catal 54:59

    Article  CAS  Google Scholar 

  56. Mironenko OO, Shitova NB, Kotolevich YS, Sharafutdinov MR, Struikhina NO, Smirnova NS, Kochubei DI, Protasova OV, Trenikhin MV, Stonkus OA, Zaikovskii VI, Goncharov VB, Tsyrulnikov PG (2012) Int J Self-Propagating High-Temp Synth 21:139–145

    Article  CAS  Google Scholar 

  57. Kotolevich YS, Khramov EV, Mironenko OO, Zubavichus YV, Murzin VY, Frey DI, Metelev SE, Shitova NB, Tsyrulnikov PG (2014) Int J Self-Propagating High-Temp Synth 23:9

    Article  CAS  Google Scholar 

  58. US Patent No. 3189563, 1965

  59. UK Patent No. 1460748, 1977

  60. Japan Patent Application JPS5363296, 1978

  61. Mulina TV, Filipov AV, Chumachenko VA (1988) React Kinet Catal Lett 37:95

    Article  CAS  Google Scholar 

  62. Hosseini SA, Niaei A, Salari D, Alvarez-Galvan MC, Fierro JLG (2014) Ceramics Int 40:6157

    Article  CAS  Google Scholar 

  63. Mazzocchia C, Kaddouri A (2003) J Molec Catal A 204–205:647

    Article  Google Scholar 

  64. Chiu TW, Yu BS, Wang YR, Chen KT, Lin YT (2011) J Alloys Compd 509:2933

    Article  CAS  Google Scholar 

  65. Carotenuto G, Kumar A, Miller J, Mukasyan A, Santacesaria E, Wolf EE (2013) Catal Today 203:163

    Article  CAS  Google Scholar 

  66. Massa W (2005) Crystal structure determination. Springer, Berlin

    Google Scholar 

  67. David WIF, Shankland K, McCusker LB, Baerlocher C (2002) Structure determination form powder diffraction data IUCr Monographs on crystallography. Oxford Science publications, Oxford

    Google Scholar 

  68. Misra P, Dubinskii M (2002) Ultraviolet Spectroscopy and UV Lasers. Marcel Dekker, New York

    Book  Google Scholar 

  69. Sooväli L, Rõõm EI, Kütt A (2006) Accred Qual Assur 11:246

    Article  Google Scholar 

  70. McMullan D (2006) Scanning 17(3):175

    Article  Google Scholar 

  71. Rose H (2008) Optics of high-performance electron Microscopes. Sci Technol Adv Mater 9:014107

    Article  CAS  Google Scholar 

  72. Plyasova LM, Larina TV, Krivencov VV, Zaykovskii VI, Dokuchic EV, Minukova TP (2015) Kinet Catal 56:499

    Article  Google Scholar 

  73. Asmolov GN, Krylov OV (1970) Kinet Catal 11:1028

    CAS  Google Scholar 

Download references

Acknowledgments

The work was performed within the frameworks of the joint Research and Educational Center for Energy Efficient Catalysis (Novosibirsk State University, Boreskov Institute of Catalysis) and State Research Task Program (project No.V.46.5.6), supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Zagoruiko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazhigalov, S., Elyshev, A., Lopatin, S. et al. Copper-chromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air. Reac Kinet Mech Cat 120, 247–260 (2017). https://doi.org/10.1007/s11144-016-1089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1089-3

Keywords

Navigation