Skip to main content
Log in

Removal of CO by Water–Gas Shift Reaction over Bimetal CeO2 and Ni Nanoparticles Dispersed in Carbon Micro-nanofibers

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present study focuses on the removal of CO by the water–gas shift reaction over the bimetal CeO2 and Ni nanoparticles (NPs) dispersed in the multi-scale web of activated carbon micro/nanofibers (CNFs/ACF). The CNFs were grown on an ACF substrate, using catalytic chemical vapor deposition and acetylene as the carbon source. The Ni NPs had dual roles as the catalyst: (1) for decomposing acetylene and (2) for the oxidation of CO. The CeO2 dispersed in the ACFs provided necessary nascent oxygen for the oxidation. Approximately 80 % conversion of CO was achieved at 400 °C, using 2 % (v/v) CO in nitrogen. The high reaction rate [~0.75 µmol CO/g-s] on the prepared material was attributed to the catalytic Ni NPs, oxygen providing CeO2, surface functional groups-containing ACF, and active exposed edges of hexagon in the CNFs. The prepared bimetal containing CNF/ACF web is a potential catalyst for the effective removal of CO without requiring an external supply of O2 or a promoter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Byron SRJ, Muruganandam L, Murthy SS (2010) Int J Chem React Eng 8:R4

    Google Scholar 

  2. Neuberg S, Keller S, Connell MO, Schurer J, Thiele R, Zapf R, Ziogas A, Kolb G (2014) Int J Hydrogen Energy 39:18120

    Article  CAS  Google Scholar 

  3. Luengnaruemitchai A, Osuwan S, Gulari E (2003) Catal Commun 4:215

    Article  CAS  Google Scholar 

  4. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Top Catal 44(1–2):199

    Article  CAS  Google Scholar 

  5. Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47(15):2884

    Article  CAS  Google Scholar 

  6. Zhu X, Hoang T, Lobban LL, Mallinson RG (2009) Catal Lett 129:135

    Article  CAS  Google Scholar 

  7. Wang Y, Zhai Y, Pierre D, Flytzani-Stephanopoulos M (2012) Appl Catal B 127:342

    Article  CAS  Google Scholar 

  8. Zugic B, Bell DC, Flytzani-Stephanopoulos M (2014) Appl Catal B 144:243

    Article  CAS  Google Scholar 

  9. Kugai J, Miller JT, Guo N, Song C (2011) J Catal 277:46

    Article  CAS  Google Scholar 

  10. Gamboa-Rosales NK, Ayastuy JL, Iglesias-González A, González-Marcos MP, Gutiérrez-Ortiz MA (2012) Chem Eng J 207–208:49

    Article  Google Scholar 

  11. Andreev A, Idakiev V, Kostov K, Gabrovska M (1995) Catal Lett 31:245

    Article  CAS  Google Scholar 

  12. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  13. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K (2003) Appl Catal A 242:287

    Article  CAS  Google Scholar 

  14. Djinovic P, Batista J, Levec J, Pintar A (2009) Appl Catal A 364:156

    Article  CAS  Google Scholar 

  15. Zhang L, Millet J-MM, Ozkan US (2009) App Catal A 357:66

    Article  CAS  Google Scholar 

  16. Si R, Raitano J, Yi N, Zhang L, Chan S-W, Flytzani-Stephanopoulos M (2012) Catal Today 180:68

    Article  CAS  Google Scholar 

  17. Budiman A, Ridwan M, Kim SM, Choi J-W, Yoon CW, Ha J-M, Suh DJ, Suh Y-W (2013) Appl Catal A 462–463:220

    Article  Google Scholar 

  18. Andreev AA, Kafedjiysky VJ, Edreva-Kardjieva RM (1999) Appl Catal A 179(1–2):223

    Article  CAS  Google Scholar 

  19. Lin J-H, Biswas P, Guliants VV, Misture S (2010) Appl Catal A 387:87

    Article  CAS  Google Scholar 

  20. Kumar P, Idem R (2007) Energy Fuels 21:522

    Article  CAS  Google Scholar 

  21. Jeong D-W, Subramanian V, Shim J-O, Jang W-J, Seo Y-C, Roh H-S, Gu JH, Lim YT (2013) Catal Lett 143:438

    Article  CAS  Google Scholar 

  22. Shinde VM, Madras G (2013) Appl Catal B 132–133:28

    Article  Google Scholar 

  23. Sekizawa K, Yano S, Eguchi K, Arai H (1998) Appl Catal A 169:291

    Article  CAS  Google Scholar 

  24. Utaka T, Sekizawa K, Eguchi K (2000) Appl Catal A 194:21

    Article  Google Scholar 

  25. Bickford ES, Velua S, Songabc C (2003) Prep Pap Am Chem Soc 48(2):810

    CAS  Google Scholar 

  26. Bhaduri B, Prajapati YN, Sharma A, Verma N (2012) Ind Eng Chem Res 51:15633

    Article  CAS  Google Scholar 

  27. Bhaduri B, Verma N (2014) Chem Eng Res Des 92(6):1079

    Article  CAS  Google Scholar 

  28. Wang Y, Zhu A, Zhang Y, Au CT, Yang X, Shi C (2008) Appl Catal B 81:141

    Article  CAS  Google Scholar 

  29. Bikshapathi M, Mathur GN, Sharma A, Verma N (2012) Ind Eng Chem Res 51(4):2104

    Article  CAS  Google Scholar 

  30. Bikshapathi M, Singh S, Bhaduri B, Mathur GN, Sharma A, Verma N (2012) Colloids Surf. A 399:46

    Article  CAS  Google Scholar 

  31. Bhaduri B, Verma N (2014) J Colloid Interface Sci 436:218

    Article  CAS  Google Scholar 

  32. Lee S-H, Cheong HM, Park N-G, Tracy CE, Mascarenhas A, Benson DK, Deb SK (2001) Solid State Ionics 140:135

    Article  CAS  Google Scholar 

  33. Ma J, Li L, Ren J, Li R (2010) Sep Purif Technol 76:89

    Article  CAS  Google Scholar 

  34. Penkova A, Laguna OH, Centeno MA, Odriozola JA (2012) J Phys Chem C 116:5747

    Article  CAS  Google Scholar 

  35. Lim S, Yoon S-H, Shimizu Y, Jung H, Mochida I (2004) Langmuir 20:5559

    Article  CAS  Google Scholar 

  36. Zielinski J (1993) J Mol Catal 79:187

    Article  CAS  Google Scholar 

  37. Ivanov I, Petrova P, Georgiev V, Batakliev T, Karakirova Y, Serga V, Kulikova L, Eliyas A, Rakovsky S (2013) Catal Lett 143:942

    Article  CAS  Google Scholar 

  38. Jacobs G, Chenu E, Patterson PM, Williams L, Sparks D, Thomas G, Davis BH (2004) Appl Catal A 258:203

    Article  CAS  Google Scholar 

  39. Pastor-Pérez L, Ramírez Reina T, Ivanova S, Centeno MA, Odriozola JA, Sepúlveda-Escribano A (2015) Catalysts 5:298

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kynol, Inc. (Tokyo, Japan) for providing the ACF samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishith Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaduri, B., Verma, N. Removal of CO by Water–Gas Shift Reaction over Bimetal CeO2 and Ni Nanoparticles Dispersed in Carbon Micro-nanofibers. Catal Lett 145, 1262–1271 (2015). https://doi.org/10.1007/s10562-015-1528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1528-1

Keywords

Navigation