Skip to main content
Log in

Reaction characteristics of KOH-modified copper manganese oxides catalysts for low-temperature CO oxidation in the presence of CO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Binary copper manganese oxides catalysts supported on different activated carbons were prepared using the co-precipitation and high-pressure impregnation methods. The catalysts were further modified by KOH to mitigate the adverse effect of CO2 on their CO oxidation performances. The as-synthesized catalysts were characterized by N2 adsorption–desorption, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of support and synthesis method, CO concentration, CO2 concentration, gas hourly space velocity (GHSV), and particle size on CO oxidation performances of the catalysts were investigated. The nature of the different activated carbon supports showed no significant effect on their CO oxidation performances. By contrast, the high-pressure impregnation method was conducive to more effective loading and uniform dispersion of the active components on the support and therefore to benefit the catalyst enhanced CO oxidation performances. Under the given experimental conditions, CO oxidation conversion decreased with the increase of CO concentration, CO2 concentration, GHSV, and particle diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karanjikar A (2005) Auburn University, Alabama. https://etd.auburn.edu/handle/10415/1276

  2. Gold A, Burgess WA, Clougherty EV (1978) Am Ind Hyg Assoc J 39:534–539

    Article  CAS  Google Scholar 

  3. Terrill JB, Montgomery RR, Reinhardt CF (1978) Science 200:1343–1347

    Article  CAS  Google Scholar 

  4. Behar S, Gonzalez P, Agulhon P, Quignard F, Świerczyński D (2012) Catal Today 189:35–41

    Article  CAS  Google Scholar 

  5. Krämer M, Schmidt T, Stöwe K, Maier WF (2006) Appl Catal A 302:257–263

    Article  Google Scholar 

  6. Yoon C, Cocke DL (1988) J Catal 113:267–280

    Article  CAS  Google Scholar 

  7. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Appl Catal B 89:420–424

    Article  CAS  Google Scholar 

  8. Clarke TJ, Davies TE, Kondrat SA, Taylor SH (2015) Appl Catal B 165:222–231

    Article  CAS  Google Scholar 

  9. Wojciechowska M, Przystajko W, Zieliński M (2007) Catal Today 119:338–341

    Article  CAS  Google Scholar 

  10. Li M, Wang DH, Shi XC, Tang ZT, Dong TX (2007) Sep Purif Technol 57:147–151

    Article  CAS  Google Scholar 

  11. Einaga H, Kiya A (2016) Reac Kinet Mech Cat 117:521–536

    Article  CAS  Google Scholar 

  12. Jia AP, Deng Y, Hu GS, Luo MF, Lu JQ (2016) Reac Kinet Mech Cat 117:503–520

    Article  CAS  Google Scholar 

  13. Choi KH, Lee DH, Kim HS, Yoon YC, Park CS, Kim YH (2016) Ind Eng Chem Res 55:4443–4450

    Article  CAS  Google Scholar 

  14. Caputo T, Lisi L, Pirone R, Russo G (2007) Ind Eng Chem Res 46:6793–6800

    Article  CAS  Google Scholar 

  15. Hasegawa YI, Maki RU, Sano M, Miyake T (2009) Appl Catal A 371:67–72

    Article  CAS  Google Scholar 

  16. Njagi EC, Chen CH, Genuino H, Galindo H, Huang H, Suib SL (2010) Appl Catal B 99:103–110

    Article  CAS  Google Scholar 

  17. Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ (2009) J Mol Catal A 305:121–124

    Article  CAS  Google Scholar 

  18. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Appl Catal A 166:143–152

    Article  CAS  Google Scholar 

  19. Ren N, Guo L, Dong X, Wen C (2015) Transit Metal Chem 40:207–216

    Article  CAS  Google Scholar 

  20. Cao JL, Wang Y, Sun G, Zhang ZY (2011) Transit Metal Chem 36:107–112

    Article  CAS  Google Scholar 

  21. Barbato PS, Benedetto AD, Landi G, Lisi L (2015) Chem Eng J 279:983–993

    Article  CAS  Google Scholar 

  22. Li JJ, Li L, Cheng W, Wu F, Lu XF, Li ZP (2014) Chem Eng J 244:59–67

    Article  CAS  Google Scholar 

  23. Liu XS, Jin ZN, Lu JQ, Wang XX, Luo MF (2010) Chem Eng J 162:151–157

    Article  CAS  Google Scholar 

  24. Peng CT, Lia HK, Liaw BJ, Chen YZ (2011) Chem Eng J 172:452–458

    Article  CAS  Google Scholar 

  25. Hoflund GB, Gardner SD, Schryer DR, Upchurch BT, Kielin EJ (1995) Langmuir 11:3431–3434

    Article  CAS  Google Scholar 

  26. Liang F, Zhu H, Qin Z, Wang G, Wang J (2009) Catal Commun 10:737–740

    Article  CAS  Google Scholar 

  27. Parinyaswan A, Pongstabodee S, Luengnaruemitchai A (2006) Int J Hydrogen Energy 31:1942–1949

    Article  CAS  Google Scholar 

  28. Wang F, Zhao K, Zhang H, Dong Y, Wang T, He D (2014) Chem Eng J 242:10–18

    Article  CAS  Google Scholar 

  29. Oudenhuijzen MK (2002) Utrecht University, Netherlands. http://dspace.library.uu.nl/handle/1874/761

  30. De Mallmann A, Barthomeuf D (1990) J Chim Phys 87:535–538

    Google Scholar 

  31. Ethiraj AS, Kang DJ (2012) Nanoscale Res Lett 7:1–5

    Article  Google Scholar 

  32. Valdés-Solís T, López I, Marbán G (2010) Int J Hydrogen Energy 35:1879–1887

    Article  Google Scholar 

  33. Guo YF, Li CH, Lu SX, Zhao CW (2016) RSC Adv. 6:7181–7188

    Article  CAS  Google Scholar 

  34. Li N, Chen QY, Luo LF, Huang WX, Luo MF, Hu GS, Lu JQ (2013) Appl Catal B 142–143:523–532

    Article  Google Scholar 

  35. Shen Y, Lu G, Guo Y, Wang Y, Guo Y, Gong X (2011) Catal Today 175:558–567

    Article  CAS  Google Scholar 

  36. Lou Y, Wang L, Zhao Z, Zhang Y, Zhang Z, Lu G, Guo Y (2014) Appl Catal B 146:43–49

    Article  CAS  Google Scholar 

  37. Srivastava AK, Saxena A, Shah D, Mahato TH, Singh B, Shrivastava AR, Shinde CP (2012) J Hazard Mater 241–242:463–471

    Article  Google Scholar 

  38. Wang L, Wang W, Zhang Y, Guo Y, Lu G, Guo Y (2015) Catal Today 242:315–321

    Article  CAS  Google Scholar 

  39. Biabani-Ravandi A, Rezaei M (2012) Chem Eng J 184:141–146

    Article  CAS  Google Scholar 

  40. Li N, Chen QY, Luo LF, Huang WX, Luo MF, Hu GS, Lu JQ (2013) Appl Catal B 142:523–532

    Article  Google Scholar 

  41. Thomas JM, Thomas WJ (2014) Principles and practice of heterogeneous catalysis. Wiley, Germany

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (U1510129 and 51323010) and the Fundamental Research Funds for the Central Universities (WK2320000034) is sincerely acknowledged. The authors also wish to acknowledge Dr. Yanming Ding for the English editing for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lu, S., Lin, J. et al. Reaction characteristics of KOH-modified copper manganese oxides catalysts for low-temperature CO oxidation in the presence of CO2 . Reac Kinet Mech Cat 120, 149–165 (2017). https://doi.org/10.1007/s11144-016-1079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1079-5

Keywords

Navigation