Skip to main content
Log in

On the mechanism of the preferential oxidation of carbon monoxide over Cu n Pd (n = 3–12) catalysts

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Preferential oxidation of CO (CO-PROX) is an important practical process for the purification of H2 for use in proton exchange membrane fuel cells. In order to clarify the mechanism of CO-PROX, the reaction promoted by Cu n Pd (n = 3–12) clusters has been studied by density functional theory calculations. The CO-PROX reaction via carboxylic and hydroxyl intermediates is found to be the most likely mechanism. The theoretical results show that CO oxidation is promoted by the attack of surface OH groups, which is different from the usual oxidation of CO with O2. The Cu6Pd cluster is predicted to have a lower activation barrier compared with other Cu n Pd clusters and is therefore proposed as the most effective nanocatalyst. To gain insights into the high catalytic activity of the Cu n Pd nanoparticles, the nature of the interaction between adsorbate and substrate has been analyzed by the detailed electronic local density of states. The results should be helpful in developing efficient catalysts for the CO-PROX reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biffinger JC, Uppaluri SH, Sun HR, DiMagno SG (2011) ACS Catal 1:764–771

    Article  CAS  Google Scholar 

  2. Xu LS, Wu ZF, Zhang YC, Chen BH, Jiang ZQ, Ma YS, Huang WX (2011) J Phys Chem C 115:14290–14299

    Article  CAS  Google Scholar 

  3. Chandra R, Wagner JP (2009) Catal Rev 51:325–440

    Article  Google Scholar 

  4. Wang L, Chen JL, Ge L, Rudolph V, Zhu ZH (2013) J Phys Chem C 117:4141–4151

    Article  CAS  Google Scholar 

  5. Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) J Am Chem Soc 132:7418–7428

    Article  CAS  Google Scholar 

  6. Liu K, Wang AQ, Zhang T (2012) ACS Catal 2:1165–1178

    Article  CAS  Google Scholar 

  7. Pozdnyakova O, Teschner D, Wootsch A, Kröhnert J, Steinhauer B, Sauer H, Tothc L, Jentoft FC, Gericke AK, Paál Z, Schlögl R (2006) J Catal 237:17–28

    Article  CAS  Google Scholar 

  8. Morfin F, Nassreddine S, Rousset JL, Piccolo L (2012) ACS Catal 2:2161–2168

    Article  CAS  Google Scholar 

  9. Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) J Am Chem Soc 134:14283–14286

    Article  CAS  Google Scholar 

  10. Chen ST, Jenkins SV, Tao J, Zhu YM, Chen JY (2013) J Phys Chem C 117:8924–8932

    Article  CAS  Google Scholar 

  11. Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Catal Lett 93:93–100

    Article  CAS  Google Scholar 

  12. Gamarra D, Munuera G, Hungría AB, García MF, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodríguez JA, Arias AM (2007) J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  13. Abdelsayed V, Aljarash A, Shall MSE (2009) Chem Mater 21:2825–2834

    Article  CAS  Google Scholar 

  14. Casey PB, James BM, Bryan DM, Andrew JG (2011) J Phys Chem C 115:24221–24230

    Article  Google Scholar 

  15. Kugai J, Miller JT, Guo N, Song CS (2011) J Catal 277:46–53

    Article  CAS  Google Scholar 

  16. Tanaka K, Shou M, He H, Shi XY, Zhang XL (2009) J Phys Chem C 113:12427–12433

    Article  CAS  Google Scholar 

  17. Tanaka K, Shou M, Yuan YZ (2010) J Phys Chem C 114:16917–16923

    Article  CAS  Google Scholar 

  18. Tanaka K, He H, Shou M, Shi XY (2011) Catal Today 175:467–470

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C. 01. Gaussian Inc., Wallingford

    Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  21. Syzgantseva OA, Gonzalez NP, Calatayud M, Bromley S, Minot C (2011) J Phys Chem C 115:15890–15899

    Article  CAS  Google Scholar 

  22. Peng CY, Ayala PY, Schlegel HB (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  23. Gonzalez C, Schlegel HB (1990) J Chem Phys 54:5523–5527

    Article  Google Scholar 

  24. Huber KP, Herzberg G (1979) Molecular spectra molecular structures 4: constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  25. Zhao Y, Tian DX (2012) Comput Theor Chem 991:40–43

    Article  CAS  Google Scholar 

  26. Morse MD (1986) Chem Rev 86:1049–1109

    Article  CAS  Google Scholar 

  27. Lin SS, Strauss B, Kant A (1969) J Chem Phys 51:2282

    Article  CAS  Google Scholar 

  28. Florez E, Mondragón F, Fuentealba P (2006) J Phys Chem B 110:13793–13798

    Article  CAS  Google Scholar 

  29. Yuan XX, Liu LX, Wang X, Yang ML, Jackson KA, Jellinek J (2011) J Phys Chem A 115:8705–8712

    Article  CAS  Google Scholar 

  30. Han SL, Xue XL, Nie XC, Zhai H, Wang F, Sun Q, Jia Y, Li SF, Guo ZX (2010) Phys Lett A 374:4324–4330

    Article  CAS  Google Scholar 

  31. Yang M, Yang F, Jackson KA, Jellinek J (2010) J Chem Phys 132:064306

    Article  CAS  Google Scholar 

  32. Hussain A, Gracia J, Niemantsverdriet JW, Nieuwenhuys BE (2011) Molecules 16:9582–9599

    Article  CAS  Google Scholar 

  33. Guo L, Yang YF (2013) Int J Hydrogen Energy 38:3640–3649

    Article  CAS  Google Scholar 

  34. Pelzer AW, Jellinek J, Jackson KA (2013) J Phys Chem A 117:10407–10415

    Article  CAS  Google Scholar 

  35. Harris J, Andersson S (1985) Phys Rev Lett 55:1583–1586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 105088, 2015537) and Shanxi Normal University (SD2013CXCY-65) and Teaching Reform Project of Shanxi Normal University (SD2013JGXM-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, N., Guo, L., Dong, X. et al. On the mechanism of the preferential oxidation of carbon monoxide over Cu n Pd (n = 3–12) catalysts. Transition Met Chem 40, 207–216 (2015). https://doi.org/10.1007/s11243-015-9908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9908-3

Keywords

Navigation