Skip to main content
Log in

Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Three CuO–MnOx–CeO2 catalysts with different impregnation sequences (i.e. MnOx/CuO/CeO2, CuO/MnOx/CeO2 and CuO–MnOx/CeO2) were prepared and the effects of impregnation sequences on the structures and catalytic behaviors of these catalysts were investigated. It was found that the MnOx/CuO/CeO2 possessed the largest amount of oxygen vacancies but the lowest reducibility; the CuO/MnOx/CeO2 had the largest Cu+ contents but the lowest amount of oxygen vacancies; the CuO–MnOx/CeO2 catalyst had the highest CuO dispersion and the best reducibility, along with moderate amount of oxygen vacancies and Cu+ contents on the surface. The kinetic studies revealed that the apparent activation energies of CO oxidation over the CuO–MnOx/CeO2, MnOx/CuO/CeO2 and CuO/MnOx/CeO2 were 49.5, 51.8 and 73.8 kJ mol−1, in order, and the activities followed an order of CuO–MnOx/CeO2 > MnOx/CuO/CeO2 > CuO/MnOx/CeO2. The highest performance of the CuO–MnOx/CeO2 was ascribed to the highly dispersed CuO species and the mobility of lattice oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hornés A, Hungría AB, Bera P, López Cámara A, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JA, Hanson J, Rodriguez JA (2010) J Am Chem Soc 132:34–35

    Article  Google Scholar 

  2. Cámara AL, Kubacka A, Schay Z, Koppány Z, Martínez-Arias A (2011) J Power Sources 196:4364–4369

    Article  Google Scholar 

  3. Laguna OH, Hernández WY, Arzamendi G, Gandía LM, Centeno MA, Odriozola JA (2014) Fuel 118:176–185

    Article  CAS  Google Scholar 

  4. Widmann D, Hocking E, Behm RJ (2014) J Catal 317:272–276

    Article  CAS  Google Scholar 

  5. Liu HH, Wang Y, Jia AP, Wang SY, Luo MF, Lu JQ (2014) Appl Surf Sci 314:725–734

    Article  CAS  Google Scholar 

  6. Li GN, Li L, Yuan Y, Shi JJ, Yuan YY, Li YS, Zhao WR, Shi JL (2014) Appl Catal B 158–159:341–347

    Article  Google Scholar 

  7. Karadeniz H, Karakaya C, Tischer S, Deutschmann O (2013) Chem Eng Sci 104:899–907

    Article  CAS  Google Scholar 

  8. Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  9. Jia AP, Hu GS, Meng L, Xie YL, Lu JQ, Luo MF (2012) J Catal 289:199–209

    Article  CAS  Google Scholar 

  10. Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:304–316

    Article  CAS  Google Scholar 

  11. Martínez-Arias A, Fernández-García M, Gálvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207–216

    Article  Google Scholar 

  12. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52–59

    Article  CAS  Google Scholar 

  13. Teng ML, Luo LT, Yang XM (2009) Microporous Mesoporous Mater 119:158–164

    Article  CAS  Google Scholar 

  14. Chen YZ, Liaw BJ, Huang CW (2006) Int J Hydrog Energy 31:427–435

    Article  Google Scholar 

  15. Chen YZ, Liaw BJ, Huang CW (2006) Appl Catal A 302:168–176

    Article  CAS  Google Scholar 

  16. Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S (2007) Int J Hydrog Energy 32:915–926

    Article  CAS  Google Scholar 

  17. Li J, Zhu PF, Zuo SF, Huang QQ, Zhou RX (2010) Appl Catal A 381:261–266

    Article  CAS  Google Scholar 

  18. Li J, Zhu PF, Zuo SF, Zhou RX (2011) J Power Sources 196:9590–9598

    Article  CAS  Google Scholar 

  19. Gong L, Luo LT, Wang R, Zhang N (2012) J Chil Chem Soc 57:1048–1053

    Article  CAS  Google Scholar 

  20. Peng CT, Lia HK, Liaw BJ, Chen YZ (2011) Chem Eng J 172:452–458

    Article  CAS  Google Scholar 

  21. Gong L, Huang Z, Luo LT, Zhang N (2014) Reac Kinet Mech Cat 111:489–504

    Article  CAS  Google Scholar 

  22. Tang X, Xu Y, Shen W (2008) Chem Eng J 144:175–180

    Article  CAS  Google Scholar 

  23. Zhang W, Wang A, Li L, Wang X, Zhang T (2008) Catal Today 131:457–463

    Article  CAS  Google Scholar 

  24. Polymath (2008) Prentice Hall, Israel. http://www.polymath-software.com/

  25. Du X, Yuan Z, Cao L, Zhang C, Wang S (2008) Fuel Process Technol 89:131–138

    Article  CAS  Google Scholar 

  26. She Y, Zheng Q, Li L, Zhan Y, Chen C, Zheng Y, Lin X (2009) Int J Hydrog Energy 34:8929–8936

    Article  CAS  Google Scholar 

  27. Li J, Zhu P, Zuo S, Huang Q, Zhou R (2010) Appl Catal A 381:261–266

    Article  CAS  Google Scholar 

  28. Kim DH, Cha JE (2003) Catal Lett 86:107–112

    Article  CAS  Google Scholar 

  29. Pu ZY, Lu JQ, Luo MF, Xi YL (2007) J Phys Chem C 111:18695–18702

    Article  CAS  Google Scholar 

  30. Weber WH, Hass KC, McBride J (1993) Phys Rev B 48:178–185

    Article  CAS  Google Scholar 

  31. Gamarra D, Munuera G, Hungría AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodriguez JA, Martínez-Arias A (2007) J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  32. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435–2441

    Article  CAS  Google Scholar 

  33. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2005) J Phys Chem B 109:19595–19603

    Article  CAS  Google Scholar 

  34. Sultana A, Sasaki M, Hamada H (2012) Catal Today 185:284–289

    Article  CAS  Google Scholar 

  35. Caputo T, Lisi L, Pirone R, Russo G (2008) Appl Catal A Gen 348:42–53

    Article  CAS  Google Scholar 

  36. Fang J, Bi X, Si D, Jiang Z, Huang W (2007) Appl Surf Sci 253:8952–8961

    Article  CAS  Google Scholar 

  37. Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc Dalton Trans 17:1686–1698

    Article  Google Scholar 

  38. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) Appl Catal A Gen 288:116–125

    Article  CAS  Google Scholar 

  39. Li J, Zhu P, Zuo S, Huang Q, Zhou R (2010) Appl Catal A Gen 381:261–266

    Article  CAS  Google Scholar 

  40. Liu L, Yu Q, Zhu J, Wan H, Sun K, Liu B, Zhu H, Gao F, Dong L, Chen Y (2010) J Colloid Interface Sci 349:246–255

    Article  CAS  Google Scholar 

  41. Martínez-Arias A, Hungría AB, Fernández-García M, Conesa JC, Munuera G (2004) J Phys Chem B 108:17983–17991

    Article  Google Scholar 

  42. Lee HC, Kim DH (2008) Catal Today 132:109–116

    Article  CAS  Google Scholar 

  43. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B 56:87–93

    Article  CAS  Google Scholar 

  44. Avgouropoulos G, Ioannides T, Matralis H (2006) Appl Catal B 67:1–11

    Article  CAS  Google Scholar 

  45. Liu ZG, Zhou RX, Zheng XM (2007) J Mol Catal A 267:137–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Public Welfare Project of Zhejiang Province (Grant No. 2013C37086), Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (Zhejiang Normal University, Grant No. ZJHX201414) and National Science Foundation of China (Grant No. 21173195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Qing Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, AP., Deng, Y., Hu, GS. et al. Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reac Kinet Mech Cat 117, 503–520 (2016). https://doi.org/10.1007/s11144-015-0947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0947-8

Keywords

Navigation